
NUMERATION

1 La numération .. 3

1.1 Principe de la numération ... 3
1.2 La Base 10 (numération décimale) ... 3

1.2.1 Rappel sur les puissances de 10 .. 4
1.3 La Base 2 ... 4

1.3.1 Présentation du binaire .. 4
1.3.2 Les opérations simple en base 2 .. 6

1.4 La base 8 (octal) ... 8
1.5 La base 16 (hexadécimal) ... 8

2 La représentation des nombres ...10

2.1 Représentation des nombres entiers non signés ...10
2.2 Représentation des nombres entiers signés : signe et valeur absolue10

2.2.1 Représentation des nombres en complément à 111
2.2.2 Représentation des nombres en complément à 211

2.3 La représentation BCD (ou DCB "décimal codé binaire")12
2.4 Code à distance unité (code Gray ou code Réflechi)14
2.5 Les nombres réels ...16

2.5.1 Représentation en Virgule fixe ..16
2.5.2 Représentation en Virgule flottante ...16
2.5.3 Exemple de représentations flottantes ..18

3 La représentation des caractères ..20
3.1 ASCII (American Standard Code for Information Interchange)20
3.2 ASCII Etendu ...20
3.3 Fichiers ASCII ..21
3.4 Exemples ...22
3.5 EBCDIC (Extended Binary Coded Decimal Interchange Code)22
3.6 UNICODE ..22

4 La représentation des Images ...23
4.1 BITMAP : Images 24 bits (ou « couleurs vraies ») ..23
4.2 BITMAP : Images à palettes, images en 256 couleurs (8 bits)23
4.3 BITMAP : Images avec gestion de la translucidité (canal alpha)24
4.4 Les images vectorielles ..24
4.5 Quelques Format d'images ..24

4.5.1 GIF (Graphics Interchange Format)...24
4.5.2 JPEG ..24
4.5.3 TIFF ..25
4.5.4 PNG (Portable Network Graphics) ..25

4.6 Protection des Droits d'Auteurs ..25
4.6.1 Protection par signature visible ...25
4.6.2 Protection par signature cryptée ..26

B.GUILBERT 2/26

Rappel

Base 10
Base 10 -> Base 2 Division par 2
Base 10 -> Base 8 Divisions successives par 8
Base 10 -> Base 16 Divisions successives par 16

Base 2
Base 2 -> Base 8 Groupement sur bits 3
Base 2 -> Base 10 Tableau
Base 2 -> Base 16 Groupement sur bits 4

Base 8
Base 8 -> Base 2 Eclatement sur 3 bits
Base 8 -> Base 10 Tableau
Base 8 -> Base 16 Passer par le binaire

Base 16
Base 16 -> Base 2 Eclatement sur 4 bits
Base 16 -> Base 8 Passer par le binaire
Base 16 -> Base 10 Tableau

B.GUILBERT 3/26

NUMERATION

1 La numération

La nécessité de quantifier (attribuer une grandeur mesurable), notamment pour les échanges
commerciaux, s’est faite dés la structuration de la vie sociale. Les tentatives de
représentation symbolique de quantités furent nombreuses; bâtons, chiffres romains, etc..
Avant que ne s’impose la numération arabe, universellement adoptée étant donné sa bonne
capacité à traiter les calculs courants.

L’emploi quotidien de ce système nous fait oublier la structure et les règles qui régissent
l’écriture des nombres, notamment la notion de base acquise en cours primaire.

1.1 Principe de la numération

La numération traditionnelle représente un nombre par la juxtaposition de symboles, appelés
chiffres, pris parmi un ensemble. Par exemple, dans le système décimal (10), cet ensemble
contient dix symboles différents.

 {0,1,2,3,4,5,6,7,8,9}

On peut très bien en utiliser d’autres!

 {,,,,,,,,,}

Cette dernière symbolique n’étant pas pratique nous la laisserons de coté pour reprendre
nos symboles habituels.

1.2 La Base 10 (numération décimale)

Un nombre est dit de Base 10 si son type de représentation s’effectue avec 10 symboles.
{0,1,2,3,4,5,6,7,8,9}

Lorsqu’un nombre est écrit, la position respective des chiffres détermine leur poids :
..... Milliers, centaines, dizaines, unités, dixièmes, centièmes..
0,1,2,3,4,5,6,7,8,9,10,11,12,13...

Par exemple 1994

 Milliers Centaines Dizaines Unités

Poids 1000 100 10 1

Nombre 1 9 9 4

...01994,000...= ... (0 * 10000) + (1 * 1000) + (9 * 100) + (9 * 10) + (4 * 1) + (0 * 0.1)

B.GUILBERT 4/26

ou 3.14

3,14= 3*1+1*0.1+4*0.01

Pour se repérer, la virgule sépare les unités des dixièmes.

1.2.1 Rappel sur les puissances de 10

106 105 104 103 102 101 100 10-1 10-2 10-3

1000000 100000 10000 1000 100 10 0 0.1 0.01 0.001

Méga Kilo Unité Milli

Par exemple on peut noter (pi) 314*10-2

ce qui revient à déterminer =314*0.01=3.14

Ce type de notation est souvent utilisé pour les NOMBRES très petit ou très grands.
Par exemple la terre est distante de la lune de 3844*105 mètres.
Sans cette notation on devrait écrire: 384 400 000 mètres.

ou la masse au repos d’un électron M=0.910953*10-30 kg
M=0.0000000000000000000000000000910953 kg

1.3 La Base 2

1.3.1 Présentation du binaire

En logique il est très simple de différencier 2 états, ouvert fermé, éteint allumé…
Donc 2 états, donc 2 symboles.. {0,1} .
On appel aussi la base 2 le Binaire, car il n’y a que 2 élément {1,0}

Passage en base 2.

BASE 10 BASE 2
0000 0000

0001 0001

0002 0010

0003 0011

0004 0100

0005 0101

0006 0110

Le principe reste le même qu’en base 10.

B.GUILBERT 5/26

La position du chiffre détermine le poids du nombre.

Poids 24 23 22 21 20 2-1 2-2 2-3 2-4

 16 8 4 2 1 1/2 1/4 1/8 1/16 Base 10

N1(2) 0 0 1 0 0 0 0 0 0 =4

N2 (2) 1 0 1 0 0 1 0 0 0 =20,5

N3 (2) 0 0 0 0 1 0 1 0 0 =1,25

N1=0*16 + 0*8 + 1*4 + 0*2 + 0*1 + 0*0.5 + 0*0.25 + 0*0.125 + 0*0.0625 = 4

N2=1*16 + 0*8 + 1*4 + 0*2 + 0*1 + 1*0.5 + 0*0.25 + 0*0.125 + 0*0.0625 = 20,5

N3=0*16 + 0*8 + 0*4 + 0*2 + 1*1 + 0*0.5 + 1*0.25 + 0*0.125 + 0*0.0625 = 1,25

(Exercices de conversion)

Le passage de la base 10 à la base 2 se fait par divisions successives par 2 pour la partie
entière, et par la multiplication par 2 pour la partie fractionnaire

Soit le nombre 20,375 en base 10

20 |_ 2
 0 10 |_2
 0 5 |_2
 1 2 |_ 1
 0 1

Le résultat est lu à "l'envers" : 10100

Pour la partie fractionnaire, on effectue des multiplications par 2
Ainsi, pour 0,375

 0,375 * 2 = 0,75
 0,75 * 2 = 1,50
 0,50 * 2 = 1

Le résultat est "lu à l'endroit" : 0,011

20,375(10) = 10100,011(2)

(exercices "système Binaire")

B.GUILBERT 6/26

1.3.2 Les opérations simples en base 2

Toutes les opérations arithmétiques de base connues en base 10 sont applicables en base 2.

L’addition:

Réaliser la somme de N1 avec N2

 N1=0110(2) ==> N1= 6 (10)
 N2=1101(2) ==> N2= 13(10)

Donc le résultat est 19 (d) ==> R=10011 (b)

retenue 1 1
nombre 1 N1= 0 1 1 0
nombre 2 N2= + 1 1 0 1
résultat = 1 0 0 1 1

Comme dans le système décimal (base 2), lorsqu’il y a un dépassement (plus de symboles
au dessus) on rajoute une colonne à l’extrême gauche de poids plus fort.
 1(2)+1(2)=10(2) (on lira 'un zéro' et non pas dix!)

Réaliser la somme de N1 + N2 + N3 + N4= 41

 N1=0110(2) ==> N1= 6 (10)
 N2=1101(2) ==> N2= 13(10)

 N3=0111(2) ==> N3= 7(10)

 N4=1111(2) ==> N3= 15(10)

1
1 0

 1 0 1
 0 1 1 0
 1 1 0 1
 0 1 1 1

+ 1 1 1 1
1 0 1 0 0 1 = 41(10)

(Exercices Addition)

B.GUILBERT 7/26

La soustraction:

Réaliser la différence de N1 avec N2, où N1>N2

 N1=1101(2) ==> N1= 13(10)
 N2=0110(2) ==> N2= 6 (10)

Donc le résultat est 7 (10) ==> R=111 (2)

nombre 1 N1= 1 11 10 1
nombre 2 N2= - 1+0 1+1 1 0
résultat 0 1 1 1 = 7(10)

calculez 3(10) -4(10) = -1 sur 4 bits (ici, N1<N2 !)

 10 10 1 1
 -1 1+0 1 0 0 = ? infini !
 … 1 1 1 1 1
(Exercices soustraction)

La multiplication :

Réaliser la multiplication de N1 avec N2

 N1=1101(2) ==> N1= 13(10)
 N2=0110(2) ==> N2= 6 (10)

nombre 1 N1= 1 1 0 1
nombre 2 N2= * 0 1 1 0
résultat 0 0 0 0
 1 1 1 1 0 1 .
 1 1 0 1 . .
 0 0 0 0 . . .
 1 0 0 1 1 1 0 = 78(10)

(Cf exercices Multiplication)

La division :

Le principe est le même qu'en base 10, mais peut être moins naturel !
(La division entière ou division euclidienne est une opération qui à deux entiers naturels
appelés dividende et diviseur associe deux autres appelés quotient et reste)

10110 |_ 101
101 100

 01
 10
 10 donc 1010 = 101*100+10

B.GUILBERT 8/26

1.4 La base 8 (octal)

Cette base est plutôt utilisée par les informaticiens. Les symboles sont {0,1,2,3,4,5,6,7}.

Poids 8

4
 8

3
 8

2
 8

1
 8

0
 8

-1
 8

-2
 8

-3
 8

-4

 4096 512 64 8 1 1/8 1/64 1/512 1/4096 Base 10

N1(B8) 7 7 7 7 7 0 0 0 0 =32767

N2 (B8) 1 2 1 0 0 1 0 0 0 =5184,125

N3 (B8) 0 0 0 0 1 0 1 0 0 =1,015625

Base 2 -> 8
Le passage de la base 2 à la base 8 se fait de façon immédiate en groupant les chiffres par
3, ainsi :

1011101,01101(2) = 1 | 011 | 101 , 011 | 010 = 1 3 5 , 3 2 (8)

Base 10 -> 8
Le passage de la base 10 à la base 8 se fait par divisions successives par 8
450 |_8 56 |_ 8 7|_8
 56 7 0
 50 0 7
 2

Soit 450(8) = 702(10)

Base 8 -> 2
Le passage de la base 8 à la base 2 se fait en "éclatant" chaque chiffre octal en un nombre
binaire codé sur 3 bits : exemple 743 (8)
7 4 3
111 101 011

Soit 743(8) = 111101011(2)

(Cf exercices Octal)
(PB:3h: exercices de rappel)

1.5 La base 16 (hexadécimal)

La base 16 est apparue avec la logique micro programmée et les microprocesseurs.
L’ensemble des symboles contient 16 éléments. Comme il n’est pas possible
traditionnellement d’écrire, avec un seul caractère, un chiffre dont la valeur est supérieur à 9,
l’ensemble comporte des lettres.

Par convention, A est équivalent à 10, B à 11 et ainsi de suite. L’ensemble des symboles de
la base 16 est donc: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

B.GUILBERT 9/26

La base 16 est une forme contractée de la base 2.

Poids 16

3
 16

2
 16

1
 16

0
 16

-1
 16

-2
 16

-3

 4096 256 16 1 1/16 1/256 1/4096 Base 10

N1 0 1 F F 0 0 0 =511

N2 0 1 2 A 1 0 0 =298,0625

N3 0 0 0 1 0 0 0 =1,00

Table de conversion:

Décimale Binaire Octal Hexadécimale
0 00000 0 0

1 00001 1 1

2 00010 2 2

3 00011 3 3

4 00100 4 4

5 00101 5 5

6 00110 6 6

7 00111 7 7

8 01000 10 8

9 01001 11 9

10 01010 12 A

11 01011 13 B

12 01100 14 C

13 01101 15 D

14 01110 16 E

15 01111 17 F

16 10000 20 10

17 10001 21 11

Base 10 -> 16
Le passage de la base 2 à la base 16 se fait par divisions successives par 16
249 |_ 16 15|_16
 89 15 15 0 soit 249(10) = F9 (16)

 9

Base 2 -> 16
Le passage de la base 2 à la base 16 se fait de façon immédiate en groupant les chiffres par
4, ainsi :
1011101,01101(2) = 101 | 1101 , 0110 | 10 = 5 D , 68 (16)

Base 16 -> 2
Le passage de la base 16 à la base 2 se fait en "éclatant" chaque chiffre octal en un nombre
binaire codé sur 4 bits
A B C (16)
1010 1011 1100
Soit ABC(16) = 101010111100(2)

Base 16 -> 8
Le plus simple est de passer par la base 2

(exercices hexa)

B.GUILBERT 10/26

2 La représentation des nombres

Ces représentations font appel à des règles qui ont été adoptées pour des raisons de facilité
de traitement matériel et logiciel.

2.1 Représentation des nombres entiers non signés

La technique consiste uniquement à transformer les nombres décimaux en binaires et de
stocker chaque chiffre binaire sur un bit

Exemple : 74(10) = 01001010(2)

2.2 Représentation des nombres entiers signés : signe et valeur absolue

La solution la plus simple. Un élément binaire est ajouté au module pour la représentation du
signe. Habituellement, il est utilisé la correspondance suivante:

0 ==> +
1 ==> -

Et le signe est placé à gauche du module (représentation sur 8 bits):

Signe b6 b5 b4 b3 b2 b1 b0

Exemple : -23(10) = 10010111(2)

Sur 8 bits, on peut coder 27 nombre positifs (de +0 à 127) et 27 nombre négatifs (-0 à -127),
on va donc de -127 à +127, avec 2 zéros !

Seulement avec cette représentation, il y a un problème, on peut représenter 0 de deux
façons : 00000000 et 10000000 sont respectivement égaux à 0 et -0.

Exercices :

Si on effectue une opération arithmétique entre des nombres négatifs et positifs, on obtient
un résultat erroné. Exemple 3-4 = 3+(-4) = -1

Dans la représentation "signe et valeur absolue“, -4(10) = 10000100 (2)

Hors 3 + (-4) = (-7) au lieu de (-1)

 0 0 0 0 0 0 1 1
+ 1 0 0 0 0 1 0 0
 1 0 0 0 0 1 1 1 = -7 (10) !!!

(Exercices "signe et valeur absolue")

B.GUILBERT 11/26

2.2.1 Représentation des nombres en complément à 1

Le complément à un est l'opération qui inverse la valeur de chacun des bits d'un nombre
binaire. Il est la première étape du complément à deux.

Pour obtenir un nombre à complément à 1 il suffit de permuter les « 0 » en « 1 » et les « 1 »
en « 0 ».

Par exemple 10010101 donne en complément à « 1 » 01101010
 _
On notera le N en complément à 1 : N

2.2.2 Représentation des nombres en complément à 2

Cette représentation évite les inconvénients de la représentation classique, où apparaissait
deux zéros. Ce procédé nous permettra de créer des nombres négatifs.
 _
(-N)=N+1

Exemple :
Pour obtenir la représentation sur 16 bits de l'entier -10(10) en complément à deux, on part de
la représentation de 10(10) en binaire, soit 0000 0000 0000 1010

On complémente :

 1111 1111 1111 0101
Et on ajoute 1
 0000 0000 0000 0001

 1111 1111 1111 0110 soit FFF6(16) ou 177768(8)

Exercices : calculez 3-4

 3-4 = 3+(-4)

 On va coder (-4)
On prend le nombre 4 : 0 0 0 0 0 1 0 0

 1 1
On inverse les bits : 1 1 1 1 1 0 1 1
On ajoute 1 : 11111100 0 0 0 0 0 0 0 1
 1 1 1 1 1 1 0 0 = -4(10)

 Le bit de signe (bit de poids fort) est automatiquement mis à 1 par l'opération
d'inversion.

B.GUILBERT 12/26

Calculons maintenant 3+(-4) :

 0 0 0 0 0 0 1 1 = 3(10)
 + 1 1 1 1 1 1 0 0 = -4(10)
 1 1 1 1 1 1 1 1

Conclusion : 3+(-4)=11111111 (2)

Si l'on obtient un résultat négatif (bit de poids fort à 1), il faut refaire le complément à
deux pour obtenir l'équivalent décimal positif

Le complément à deux de 11111111 est 00000001 soit 1 en décimal,
donc 11111111 = (-1) en décimal.

La représentation en complément à 2 permets de coder, sur 8 bits, les n ombres de -128 à
+127, avec seul 1 zéro !

Exemple sur 4 bits :

 Non signé Représentation
classique

Représentation en
complément à 2

0000 0 0 0

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 8 0 -8

1001 9 -1 -7

1010 10 -2 -6

1011 11 -3 -5

1100 12 -4 -4

1101 13 -5 -3

1110 14 -6 -2

1111 15 -7 -1

(Exercices complément à 2)

2.3 La représentation BCD (ou DCB "décimal codé binaire")

Dans certains cas, on peut préférer aux représentations binaires décrites ci-dessus un
codage qui permette de passer plus facilement du code décimal d'un nombre à sa
représentation en machine. Le codage couramment utilisé porte le nom de BCD (Binary
Coded Decimal).

Chaque chiffre d'un nombre représenté en base 10 est codé sur quatre bits (un quartet)
Avec n bits (n multiple de 4), il est possible de représenter les nombres entre 0 et 10n/4-1

B.GUILBERT 13/26

Ainsi, l'entier 1992 sera représenté par : 0001 1001 1001 0010 (2)

0 0000

1 0001

3 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Les quartets 1010 à 1111 sont des combinaisons inutilisées donc illégales.

Le codage du signe peut être fait séparément en lui réservant un demi-octet (nibble ou
quartet) auquel on affectera une valeur en dehors de l'intervalle [0,9].

Par convention,

- le signe "-" sera codé 1101, càd D(16)
- le signe "+" sera codé 1100, càd C(16)

 alors -1992 sera codé D1992(16)

Remarques
6+5 = 0110 + 0101 = 1011 ce qui est interdit en BCD !
Il faut donc ajouter 6 (les 6 codes non significatifs) ce qui donne 1011+0110 = 1 0001 ce qui
donne bien 11 en décimal ! (0001 0001)

Exercice :
Calculez la valeur décimale de : 0001100110010100 (2)
 0001 1001 1001 0100 (2)
 1*1000 + 9*100 + 9*10 + 4*1
 1994

Calculez la valeur décimale de : 1010 (2)
1010 ne fait pas 10 (10) car 1010 fait parti des valeurs interdites
10 = 0001 0000 !

Calculez 12+6 : 00010010 (12)
 + 00000110 (6)
 00011000 (=18)

Calculez 22+8 00100010 (22)
 + 00001000 (8)
 00101010 Valeur interdite ! on rajoute 6 !
 + 00000110 (6)
 00110000 (=30)

(Exercices "BCD")

B.GUILBERT 14/26

Il existe des variantes du codage BCD:

Le code Excess 3 (XS 3)

Le codage binaire excédent 3 qui consiste à représenter le chiffre à coder + 3.
Par exemple, pour coder 48 :

 4 8
 +3 +3
 7 11
soit 0111 1011

En Excess 3, les codes non valides sont : 0000 (zéro),0001 (un),0010 (deux),1101 (treize),
1110 (quatorze) et 1111 (quinze)

Le code Aïken

Le code Aiken où 0, 1, 2, 3, 4 sont codés comme en BCD et 5, 6, 7, 8, 9 sont codés de 1011
à 1111. Il permet d'obtenir le complément à 9 en permutant les 1 et les 0.

2.4 Code à distance unité (code Gray ou code Réflechi)

Ce codage permet de ne faire changer qu'un seul bit à la fois quand un nombre est
augmenté d'une unité. Le code distance à unité le plus fréquemment utilisé est le code Gray
ou code réfléchi.

Le code Gray est un code non pondéré (aucun poids est affecté à la position d'un bit. On
convient simplement d'un tableau de correspondances entre les objets à coder et une
représentation)

B.GUILBERT 15/26

Exemple le code Gray : Pour passer d'une ligne à la suivante, on inverse le bit le plus à
droite possible conduisant à un nombre nouveau

Base 10 Code Gray

0 0 0 0 0

1 0 0 0 1

2 0 0 1 1

3 0 0 1 0

4 0 1 1 0

5 0 1 1 1

6 0 1 0 1

7 0 1 0 0

8 1 1 0 0

9 1 1 0 1

10 1 1 1 1

Ce code à été imaginé pour éviter les problèmes de transition car lorsque l’on passe de n à n+1
dans un code binaire on peut lire plusieurs états parasites, exemple pour passer de 3 à 4

 3 =====> 0011
 0010 états parasite de transition
 0000 états parasite de transition
 4 =====> 0100

On peut donc lire 2 puis 0 et enfin 4!!

Alors que en code Gray le problème disparaît.

 3 =====> 0010
 4 =====> 0110

Ce code gray est surtout utilisé pour des capteurs de positions, en effet, un seul bit
change à chaque fois, ce qui évite toute ambiguïté de lecture.

Le code Gray sert également dans les tables de Karnaugh utilisées lors de la conception de
circuits logiques.

 (Exercices Code Gray)

B.GUILBERT 16/26

2.5 Les nombres réels

Deux méthode permettent de représenter les nombres réels : les représentations en virgule
fixe et virgule flottante

2.5.1 Représentation en Virgule fixe

Cette technique fixe arbitrairement la position de la virgule "entre" deux chiffres de la
représentation binaire

Exemple : 12,75(10) à représenter en virgule fixe sur un octet.
On suppose que la virgule si situe entre le bit 3 et 4
12 (10)= 1100(2)
0,75 (10) = 0,11(2)
1100,1100

2.5.2 Représentation en Virgule flottante

Les nombres à virgule flottante sont les nombres les plus souvent utilisés dans un
ordinateur. Ce sont des approximations rationnelles de nombres réels.

Les nombres à virgule flottante possèdent

- un signe s (dans {-1, 1}),
- une mantisse entière m (parfois appelée significande)
- un exposant e.

Un tel triplet représente un réel s*m*be où b est la base de représentation (parfois 2,
mais aussi 16 pour des raisons de rapidité de calculs, ou éventuellement toute autre
valeur).

En faisant varier e, on fait « flotter » la virgule décimale. Généralement, m est d'une taille
fixée.

Ceci s'oppose à la représentation dite en virgule fixe, où l'exposant e est fixé.

Rappel :

 (pi) 3,14

On peut noter = 314*10-2

 = 0,314*101

 = 0,00314*103

 Mantisse exposant

Les différences de représentation interne des nombres flottants d'un ordinateur à un autre
obligeaient à reprendre finement les programmes de calcul scientifique pour les porter d'une
machine à une autre jusqu'à ce qu'un format normalisé soit proposé par l'IEEE.

B.GUILBERT 17/26

Big et Little Endian

Description d'une façon (parmi d'autres) dont on stocke les nombres dans plusieurs octets :
l'octet de poids fort est stocké avant l'octet de poids faible. Utilisé sur la famille des 680x0 de
Motorola, c'est la façon habituelle de voir un nombre. Opposé à little endian.

La représentation en Big Endian ou Little Endian consiste donc à déterminer l'arrangement
des octets.

Exemple :

01000001000010100000000000000000 (2)

Inversion de l'ordre des octects

00000000 00000000 00001010 01000001

0 0 0 0 0 A 4 1 = 00 00 0A 41 (16)

Il n'y a pas de solution miracle au problème de l'arrangement des octets (Endian). Chacun
doit s'entendre sur le format d'emmagasinage des données. Un des processeurs aura à
traduire (changer l'ordre) des données provenant de l'autre processeur.

Certains nouveaux processeurs (tel que le PowerPC) peuvent être Bi-Endian (ils peuvent
utiliser un format ou l'autre) -- mais habituellement le système d'exploitation qui les utilise est
dépendant d'un certain type «d'Endian». Alors ils sont fixés sur une méthode et rarement
vont-ils utiliser l'autre.

Quelques faits : les processeurs Intel (x86 et Pentium) sont Little Endian et les processeurs
Motorola (la série 680x0) sont Big Endian. Le MacOS est Big Endian et Windows est Little
Endian.

B.GUILBERT 18/26

2.5.3 Exemple de représentations flottantes

Norme IEEE 754 (Institue of Electrical and Electronics Engineers)

La norme IEEE 754 (reprise par la norme internationale CEI 60559) spécifie deux formats de
nombres en virgule flottante et les opérations associées. La quasi-totalité des architectures
d'ordinateurs actuelles, y compris PowerPC, et AMD64, incluent une implémentation
matérielle des calculs sur flottants IEEE, directement dans le microprocesseur, garantissant
une exécution rapide.

Les flottants IEEE peuvent être codés sur 32 bits (« simple précision ») ou 64 bits (« double
précision »). Il est aujourd'hui très rare que des programmes utilisent la simple précision, en
tout cas sur station de travail. La répartition des bits est la suivante :

 Signe Exposant Mantisse

Simple précision 1 bit 8 bits 23 bits

Double précision 1 bit 11 bits 52 bits

Simple précision : seeeeeeeemmmmmmmmmmmmmmmmmmmmmmm

La valeur d'un nombre ainsi codé est donc :

(-1)S * 2(E-127) * (1,M) pour les nombres codés en simple précision

(-1)S * 2(E-1023) * (1,M) pour les nombres codés en double précision

Exemple :

On désire coder 2,5(10) en flottant de type short real dans la norme IEEE-754

- Convertir 2,5 en binaire = 10,1(2)

- Normaliser -> 1,01*21 (mantisse 01, exposant 1)

- Calculer la représentation de l'exposant d'après la formule : (-1)S * 2(E-127) * (1,M)

e-127 =1
e =127+1
e =128

- Convertir l'exposant en binaire 128 (10) = 10000000 (2)

- Représenter la mantisse en binaire sur 23 bits= 01000000000000000000000

- Calculer le bit de signe, ici s=0

- La représentation est donc :

01000000001000000000000000000000

seeeeeeeemmmmmmmmmmmmmmmmmmmmmmm

B.GUILBERT 19/26

On désire coder 1(10) en flottant de type short real dans la norme IEEE-754

- Convertir 1 en binaire = 1,0(2)
- Normaliser -> 1,0*20 (mantisse 0, exposant 0)

- Calculer la représentation de l'exposant d'après la formule : (-1)S * 2(E-127) * (1,M)

e-127=0
e=127

- Convertir l'exposant en binaire 127 (10) = 01111111 (2)

- Calculer le bit de signe, ici s=0

- La représentation est donc 0 | 01111111 | 000 0000 0000 0000 0000 0000

- 0011 1111 1000 0000 0000 0000 0000 0000
 3F 80 00 00 (16)

Précautions d'emploi

Certains nombres ne peuvent pas être représentés :

 Les nombres positifs supérieures à 1,11111… * 2127
127 est la plus grande caractéristique codable

 Les nombres négatifs inférieurs à -3,4 * 1038

 Les nombres trop proches de 0
La plus petite caractéristique codable est 2-126, la plus petite mantisse est
0,000000…1 (2-23)
Le plus petit nombre codable est donc 2-149 = 1,5*10-45

La représentation en virgule flottante est donc source d'imprécision

Rappels

a-b=c ↔ a=c+b
a+b=c ↔ a=c-b

a-b=-c ↔ a=-c+b
a+b=-c↔ a=-c-b

B.GUILBERT 20/26

3 La représentation des caractères

Les caractères (lettres, chiffres, symboles de ponctuation) sont généralement codés sur un
octet. Les codes les plus fréquemment utilisés sont le code ASCII (American Standard Code
for Information Interchange) et l'EBCDIC (Extended Binary Coded Decialm Interchange
Code)

3.1 ASCII (American Standard Code for Information Interchange)

Le code ASCII représente chaque caractère sur 7 bits (on parle parfois de code ASCII
étendu sur 8 bits). On peut donc coder 27 = 128 caractères.

- Les caractères de 0 à 31 ainsi que le 127 ne sont pas affichables, et correspondent à
des directives de terminal ou des fonctions de commandes

- Le caractère 32 est l'espace blanc.
- Les autres correspondent aux chiffres, aux lettres majuscules et minuscules et à

quelques symboles de ponctuation.

 000 001 010 011 100 101 110 110
0000 NULL DLE SP 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ‘ 7 G W g w
1000 BS CAN (8 H X h x
1001 HT EM) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [k {
1100 FF FS , < L \ l |
1101 CR GS - = M] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL

 Table ASCII 7 bits

3.2 ASCII Etendu

Comme ce standard n'utilise que 7 bits (au lieu de 8), il reste 128 caractères disponibles
pour les langues nationales. Par exemple, l'ISO 8859-1, appelée aussi Latin-1, étend l'ASCII
avec les caractères accentués utiles aux langues d'Europe occidentale comme le français.
(pages de code)

B.GUILBERT 21/26

 ISO 8859-1 (latin-1 ou européen occidental) — probablement la partie la plus
largement utilisée de ISO 8859, couvrant la plupart des langues européennes
occidentales : l'allemand, l'anglais, le basque, le catalan, le danois, l'écossais,
l'espagnol, le féringien, le finnois (partiellement²), le français (partiellement²),
l'islandais, l'irlandais, l'italien, le néerlandais (partiellement¹), le norvégien, le
portugais, le rhéto-roman et le suédois, certaines langues européennes sud-
orientales (l'albanais), ainsi que des langues africaines.

Le symbole de l'euro est dans la version révisée ISO 8859-15 (latin-9).

 ISO 8859-2 (latin-2 or européen central) — supporte les langues d'Europe centrale
ou de l'Est basées sur un alphabet romain, y compris le polonais, le tchèque, le
slovaque, le slovène et le hongrois. Le symbole de l'euro manquant est présent dans
la version ISO 8859-16.

 ISO 8859-3 (latin-3 or européen du Sud) — le turc, le maltais, et l'espéranto ;
largement supplanté par ISO 8859-9 pour le turc, et par Unicode pour l'espéranto.

 ISO 8859-4 (latin-4 or européen du Nord) — l'estonien, le letton, le lituanien, le
groenlandais, et le sami.

 ISO 8859-5 (cyrillique) — Couvre la plupart des langues slaves utilisant un alphabet
cyrillique, y compris le biélorusse, le bulgare, le macédonien, le russe, le serbe et
l'ukrainien.

 ISO 8859-6 (arabe) — Couvre les glyphes arabes les plus communs, mais pas tous.

 ISO 8859-7 (grec) — Couvre la langue grecque moderne (orthographe monotonique).
Peut être utilisé aussi pour le grec ancien écrit sans les accents ou dans
l'orthographe monotonique, mais manque les signes diacritiques pour l'orthographe
polytonique. Ceux-ci ont été introduits avec Unicode.

 ISO 8859-8 (hébreu) — Couvre l'alphabet hébraïque moderne tel qu'il est utilisé en
Israël. En pratique, deux codes différents existent : logique et visuel.

 ISO 8859-15 (latin-9 ou parfois de façon impropre latin-0) — une révision de 8859-1
qui abandonne quelques symboles peu utilisés, les remplaçant avec le symbole
d'Euro € et les lettres Š, š, Ţ, ţ, Œ, œ, et Ÿ, qui complète la couverture du français et
du finlandais.

 ISO 8859-16 (latin-10 or européen du Sud-Est) — pour l’albanais, le croate, le
hongrois, l'italien, le polonais, le roumain et le slovène, mais aussi le finlandais, le
français, l'allemand et le gaélique irlandais (en nouvelle orthographe). Cette police
mise plus sur les lettres que les symboles. Le signe de monnaie est remplacé avec le
symbole d'Euro. Pour autant, le format n'est pas totalement universel :

3.3 Fichiers ASCII

L'ACSII n'est pas un format totalement universel :
- sous Mac OS (Apple Macintosh), la fin de ligne est indiquée par un retour de chariot (CR)
- sous Linux, la fin de ligne est indiquée par un saut de ligne (LF)
- sous Microsoft Windows, la fin de ligne est indiquée par un retour chariot suivi d'un

saut de ligne (CRLF).

B.GUILBERT 22/26

Ainsi, lorsque l'on ouvre un fichier ASCII créé par un système sur un autre système, il faut en
général faire de la mise en forme (c'est-à-dire refaire les fin de ligne) afin de pouvoir l'afficher
et le lire de manière confortable. Toutefois, cela ne perturbe en général pas les programmes
utilisant les fichiers ASCII.

3.4 Exemples

Exemple : la chaîne de caractère "Ordinateur" sera codée :
 O r d i n a t e u r
 4F 72 64 69 6E 61 74 65 75 72 (16)

Exemple : la séquence binaire 1000001100110010011001001111
Représente le message ALLO

Quelques exemples de représentations internes sur une machine, où les entiers et réels sont
codés sur 32bits, en complément à 2 pour les entiers et en format IEEE-754 pour les
réprésentations flottantes. Les caractères sont codés en ASCII

Information à coder Nombre de bits occupés Représentation interne HEXA

Chiffre 1 en entier 32 00000001

Chiffre -1 en entier 32 FFFFFFF

Chiffre 1 en flottant 32 Exp 7F, mantisse 0, signe 0

Chiffre -1 en flottant 32 Exp 7F, mantisse 0, signe 1

Caractère "1" 8 31

Caractère "+1" 16 2B31

Caractère "-1" 16 2D31

Caractère "1.0" 24 312E30

Caractère "-1.0" 32 2D312E30

3.5 EBCDIC (Extended Binary Coded Decimal Interchange Code)

L'EBCDIC est un mode de codage des caractères sur 8 bits créé par IBM à l'époque des
cartes perforées. Il existe 6 versions différentes, incompatibles entre elles. Ce mode de
codage a été critiqué pour cette raison, mais aussi parce que certains caractères de
ponctuation ne sont pas disponibles dans certaines versions.

3.6 UNICODE

Unicode est un standard informatique qui vise à donner à tout caractère de n'importe quel
système d'écriture de langue un identifiant numérique. Unicode a été développé dans le but
de remplacer l'utilisation de pages de code nationales. Dans la pratique, tous les systèmes
d'écriture ne sont pas encore présents, car un travail de recherche documentaire auprès de
spécialistes peut encore s'avérer nécessaire pour des caractères rares ou des systèmes peu
connus.

Unicode accepte trois formes de présentation pour représenter un caractère (au sens de
symbole) : l'UTF-8, l'UTF-16 et l'UTF-32. Le chiffre après UTF représente le nombre de bits
sur lequel le caractère est codé

B.GUILBERT 23/26

4 La représentation des Images

Toute image affichée sur un écran ou une imprimante est constituée de pixels.
Le pixel ou point est l'unité de base d'une image numérique. Son nom provient de
l'expression anglaise "picture element", c'est-à-dire, « élément d'image » ou « point
élémentaire ».

4.1 BITMAP : Images 24 bits (ou « couleurs vraies »)

Chaque point de l'image est mémorisé. Ces images sont très gourmandes en mémoire
compte tenu que chaque pixel est codé sur un bit (noir & blanc) ou sur 3 octets pour les
images couleur.

Couleur
Chaque octet correspond à l'une des 3 couleur primaires (Rouge, Vert, Bleu). Les 256
couleurs codables sur un octet correspondent au poids de chacune des couleurs primaires
qui compose le point coloré.

Ce système donne un total de 16,5 millions de pixels codables (256*256*256), ce qui est
largement suffisant car l'œil humain est loin de pouvoir en discerner autant.

R V B Couleur

0 0 0 noir

0 0 1 nuance de noir

255 0 0 rouge

0 255 0 vert

0 0 255 bleu

128 128 128 gris

255 255 255 blanc

Calculez la place mémoire nécessaire pour réprésenter les images suivantes :

 La résolution du VGA est de 640 x 480, soit 307 200 pixels (900Ko);

 La résolution du Super-VGA est de 800 x 600, soit 480 000 pixels (1406 Ko);

 La résolution du XGA est de 1 024 x 768, soit 786 432 pixels(2,25 Mo)

4.2 BITMAP : Images à palettes, images en 256 couleurs (8 bits)

On utilise souvent un autre codage des images BITMAP, le codage à l'aide de la "palette de
couleur": le logiciel détermine 256 couleurs importantes dans l'image, ces couleurs sont
codées sur 3 octets (mais une seule fois), ensuite chaque pixel est codé sur 1 octet qui
correspond à une entrée dans la palette de couleurs

De cette façon, on divise à peu près par 3 l'encombrement mémoire d'une image, mais on
perd en nuance et contraste. C'est la technique utilisée pour les images BMP.

B.GUILBERT 24/26

4.3 BITMAP : Images avec gestion de la translucidité (canal alpha)

On peut attribuer à une image un canal supplémentaire, appelé canal alpha, qui définit le
degré de transparence de l'image. Il s'agit d'un canal similaire aux canaux traditionnels
définissant les composantes de couleur, codé sur un nombre fixe de bits par pixel (en
général 8 ou 16). On échelonne ainsi linéairement la translucidité d'un pixel, de l'opacité
complète à la transparence.

4.4 Les images vectorielles

Les images sont représentées à l'aide d'équations mathématiques, portions de droite et de
courbes. Un cercle sera déterminée par les coordonnées du centre et la valeur du rayon,
avec éventuellement la couleur et l'épaisseur du trait.

L'intérêt de cette méthode est la possibilité de modifier la taille du dessin dans altérer la
définition et les proportions. (ex: WMF)

L'usage de prédilection de ce type d'images concerne les schémas qu'il est possible de
générer avec certains logiciels de CAO (Conception Assistée par Ordinateur) comme
AutoCAD ou CATIA. Ce type d'images est aussi utilisé pour les animations Flash, utilisées
sur Internet pour la création de bannières publicitaires, l'introduction de sites web, voire des
sites web complets.

4.5 Quelques Format d'images

4.5.1 GIF (Graphics Interchange Format)

Le Graphics Interchange Format (littéralement « format d'échange de graphiques »), plus
connu sous l'acronyme GIF, est un format d'image numérique couramment utilisé sur le
Web.

GIF a été mis au point par CompuServe en 1987 pour permettre le téléchargement d'images
en couleur. Ce format utilise l'algorithme de compression LZW, nettement plus efficace que
l'algorithme RLE utilisé par la plupart des formats alors disponibles (PCX, ILBM puis BMP).

LZW
LZW (Cet algorithme est appelé « à dictionnaire », car il se base sur la répétition de chaînes
de caractères dans un même flux)

RLE
On dispose d'un compteur, en général sur un octet, indiquant combien de points blancs ou
noirs se suivent. Exemple : WWWBWWWWWWWWWWBBBBBWBBB

3W1B10W5B1W3B

4.5.2 JPEG

Bien que plus intéressant pour des photographies ou des images lourdes, la compression
JPEG provoque une perte d'information (algorithme de compression destructif) pouvant
aboutir à une perte de qualité visible si l'utilisateur privilégie un taux de compression élevé,
particulièrement lorsque l'image contient des changements nets de couleur ou peu de
couleurs (par exemple des logos, captures d'écran, diagrammes, ...). Le format JPEG ne
gère ni les animations ni la transparence

B.GUILBERT 25/26

4.5.3 TIFF

TIFF est un format extrêmement flexible.
Il est notoirement connu pour permettre l'enregistrement des données multi-octets au format
big endian ou little endian.
Il permet d'utiliser de nombreux types de compression, avec ou sans perte de données :
(brut, PackBits, LZW, CCITT Fax 3 et 4, JPEG.)
Cette considérable flexibilité fait que TIFF est utilisé dans des applications très diverses, des
scanners industriels aux appareils photo numériques en passant par les imprimantes. En
revanche cela fait également qu'il n'existe pas de logiciel capable d'afficher n'importe quelle
image TIFF. Un fichier TIFF commence par les deux caractères ASCII MM pour big endian
ou II pour little endian. Les deux octets suivants représentent 42, en big endian ou little
endian

4.5.4 PNG (Portable Network Graphics)

Le PNG (Portable Network Graphics) est un format d'images numériques libre de droit, qui a
été créé pour remplacer le format propriétaire GIF, dont la compression était soumise à un
brevet. Le PNG est un format non destructeur spécialement adapté pour publier des images
simples comprenant des aplats de couleurs (surface de couleur uniforme).
Compression Deflate (Deflate est un algorithme de compression de données sans pertes qui
couple l'algorithme LZ77 et le codage de Huffman (compression de type statistique))

Lorsque l'image PNG utilise une palette de 256 couleurs maximum, il n'est alors possible
d'utiliser qu'un seul niveau de transparence (totalement transparent ou totalement opaque).

RAPPEL

Type

(bitmap/
vectoriel)

Compression
des données

Nombre de couleurs
supportées

Affichage
progressif

Animation Transparence

 JPEG Bitmap
Oui,

réglable
(avec perte)

16 millions Oui Non Non

JPEG2000

Bitmap
Oui,

avec ou sans perte
16 millions Oui Non Non

 GIF Bitmap
Oui,

Sans perte
256 maxi (palette) Oui Oui Oui

 PNG Bitmap
Oui,

sans perte

Palettisé (256 couleurs ou moins)
ou

16 millions
Oui Non

Oui
(couche
Alpha)

 TIFF Bitmap
Compression ou pas
avec ou sans pertes

de monochrome à 16 millions Non Non
Oui

(couche
Alpha)

 SVG vectoriel
compression

possible
16 millions

* ne s'applique
pas

Oui
Oui

(par nature)

4.6 Protection des Droits d'Auteurs

Pour tenter de faire respecter le droit d'auteur (en France) et le copyright (dans presque tous
les autres pays), il existe des techniques de marquage numérique d'une image

4.6.1 Protection par signature visible

Cette technique consiste à intégrer une indication sur l'image, par exemple l'organisme ou
l'auteur à qui appartient l'image, afin de dissuader les pirates de s’en servir. L'inconvénient

B.GUILBERT 26/26

de cette méthode est qu'il est très facile d'éliminer ce type de tatouage avec un outil de
traitement d'images, puisque le tatouage est visible.

4.6.2 Protection par signature cryptée

Cette technique consiste à cacher le tatouage dans les données de l'image. Cette approche
a l'avantage de ne pas gêner la lecture de l'image par le simple spectateur tout en
permettant une facile identification.

L'auteur en tire un avantage complémentaire : l'éventuel pirate inattentif ne sera pas tenté de
retirer ou modifier la signature ; le pirate plus volontaire verra son activité illégale rendue un
peu plus difficile ou facilement prouvable (par la seule présence du tatouage).

Sténographie :

Usage des bits de poids faible d'une image
L'idée est de prendre un message et de le modifier de manière aussi discrète que possible
afin d'y dissimuler l'information à transmettre. Le message original est le plus souvent une
image.

La technique de base, dite LSB pour Least Significant Bit, consiste à modifier le bit de poids
faible des pixels codant l'image : une image numérique est une suite de points, que l'on
appelle pixel, et dont on code la couleur a l'aide d'un triplet d'octets par exemple pour une
couleur RGB sur 24 bits. Chaque octet indique l'intensité de la couleur correspondante
(rouge, vert ou bleu) par un niveau parmi 256.

Passer d'un niveau n au niveau immédiatement supérieur (n+1) ou inférieur (n-1) ne modifie
que peu la teinte du pixel, or c'est ce que l'on fait en modifiant le bit de poids faible de l'octet.

