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Rappel 
 
 

Base 10 
Base 10  ->  Base 2  Division par 2 
Base 10  ->  Base 8  Divisions successives par 8 
Base 10  ->  Base 16 Divisions successives par 16 
 
 
Base 2 
Base 2  ->  Base 8  Groupement sur bits 3 
Base 2  ->  Base 10 Tableau 
Base 2  ->  Base 16 Groupement sur bits 4 
 
 
Base 8 
Base 8  ->  Base 2  Eclatement sur 3 bits 
Base 8  ->  Base 10 Tableau 
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Base 16 ->  Base 2  Eclatement sur 4 bits 
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Base 16 ->  Base 10 Tableau 
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NUMERATION 
 

 

1 La numération 
 
La nécessité de quantifier (attribuer une grandeur mesurable), notamment pour les échanges 
commerciaux, s’est faite dés la structuration de la vie sociale. Les tentatives de 
représentation symbolique de quantités furent nombreuses; bâtons, chiffres romains, etc.. 
Avant que ne s’impose la numération arabe, universellement adoptée étant donné sa bonne 
capacité à traiter les calculs courants. 
 
L’emploi quotidien de ce système nous fait oublier la structure et les règles qui régissent 
l’écriture des nombres, notamment la notion de base acquise en cours primaire. 
  

1.1 Principe de la numération 

 
La numération traditionnelle représente un nombre par la juxtaposition de symboles, appelés 
chiffres, pris parmi un ensemble. Par exemple, dans le système décimal (10), cet ensemble 
contient dix symboles différents. 
 
    {0,1,2,3,4,5,6,7,8,9} 
 
On peut très bien en utiliser d’autres! 
 

    {,,,,,,,,,} 

 
 
Cette dernière symbolique n’étant pas pratique nous la laisserons de coté pour reprendre 
nos symboles habituels. 
 

1.2 La Base 10 (numération décimale) 

 
Un nombre est dit de Base 10 si son type de représentation s’effectue avec 10 symboles. 
{0,1,2,3,4,5,6,7,8,9} 
 
Lorsqu’un nombre est écrit, la position respective des chiffres détermine leur poids :  
..... Milliers, centaines, dizaines, unités, dixièmes, centièmes.. 
0,1,2,3,4,5,6,7,8,9,10,11,12,13... 
 
Par exemple 1994 
 

 Milliers Centaines Dizaines Unités 

Poids 1000 100 10 1 

Nombre 1 9 9 4 

 
...01994,000...= ... (0 * 10000) + (1 * 1000) + (9 * 100) + (9 * 10) + (4 * 1) + (0 * 0.1) 
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ou 3.14  
 
3,14= 3*1+1*0.1+4*0.01 
 
Pour se repérer, la virgule sépare les unités des dixièmes. 
 
 

1.2.1 Rappel sur les puissances de 10 

 

106 105 104 103 102 101 100 10-1 10-2 10-3 

1000000 100000 10000 1000 100 10 0 0.1 0.01 0.001 

Méga   Kilo   Unité   Milli 

 

Par exemple on peut noter   (pi) 314*10-2 

ce qui revient à déterminer =314*0.01=3.14 

 
Ce type de notation est souvent utilisé pour les NOMBRES très petit ou très grands. 
Par exemple la terre est distante de la lune de 3844*105 mètres. 
Sans cette notation on devrait écrire: 384 400 000 mètres. 
 
ou la masse au repos d’un électron M=0.910953*10-30 kg 
M=0.0000000000000000000000000000910953 kg 
 
 

1.3 La Base 2 

 

1.3.1 Présentation du binaire 

 
En logique il est très simple de différencier 2 états, ouvert fermé, éteint allumé… 
Donc 2 états, donc 2 symboles.. {0,1} . 
On appel aussi la base 2 le Binaire, car il n’y a que 2 élément {1,0} 
 
Passage en base 2. 
 

BASE 10 BASE 2 
0000 0000 

0001 0001 

0002 0010 

0003 0011 

0004 0100 

0005 0101 

0006 0110 

 
 
Le principe reste le même qu’en base 10. 
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La position du chiffre détermine le poids du nombre. 
 
Poids 24 23 22 21 20 2-1 2-2 2-3 2-4  

 16 8 4 2 1 1/2 1/4 1/8 1/16 Base 10 

N1(2) 0 0 1 0 0 0 0 0 0 =4 

N2 (2) 1 0 1 0 0 1 0 0 0 =20,5 

N3 (2) 0 0 0 0 1 0 1 0 0 =1,25 

 
 
N1=0*16 + 0*8 + 1*4 + 0*2 + 0*1 + 0*0.5 + 0*0.25 + 0*0.125 + 0*0.0625 = 4 

N2=1*16 + 0*8 + 1*4 + 0*2 + 0*1 + 1*0.5 + 0*0.25 + 0*0.125 + 0*0.0625 = 20,5 

N3=0*16 + 0*8 + 0*4 + 0*2 + 1*1 + 0*0.5 + 1*0.25 + 0*0.125 + 0*0.0625 = 1,25 

 

 
(Exercices de conversion) 
 
 
Le passage de la base 10 à la base 2 se fait par divisions successives par 2 pour la partie 
entière, et par la multiplication par 2 pour la partie fractionnaire 
 
Soit le nombre 20,375 en base 10 
 
20 |_ 2 
  0  10  |_2 
       0     5  |_2 
              1     2 |_ 1 
                    0     1 
 
Le résultat est lu à "l'envers" : 10100 
 
 
Pour la partie fractionnaire, on effectue des multiplications par 2 
Ainsi, pour 0,375 
 
 0,375  *  2 = 0,75 
 0,75 * 2 = 1,50 
 0,50 * 2 = 1 
 
Le résultat est "lu à l'endroit" : 0,011 
 
20,375(10) = 10100,011(2) 
 
 
 
(exercices "système Binaire") 
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1.3.2 Les opérations simples en base 2 

 
Toutes les opérations arithmétiques de base connues en base 10 sont applicables en base 2. 
 

L’addition: 
 
 
Réaliser la somme de N1 avec N2 
 
 N1=0110(2)  ==> N1= 6 (10) 
 N2=1101(2)  ==> N2= 13(10) 
 
Donc le résultat est 19 (d) ==> R=10011 (b) 
 
retenue  1 1   
nombre 1 N1=  0 1 1 0 
nombre 2 N2= + 1 1 0 1 
résultat      = 1 0 0 1 1 
 
 
Comme dans le système décimal (base 2), lorsqu’il y a un dépassement (plus de symboles 
au dessus) on rajoute une colonne à l’extrême gauche de poids plus fort. 
 1(2)+1(2)=10(2) ( on lira 'un zéro' et non pas dix!) 
 
 
 
Réaliser la somme de N1 +  N2 + N3 + N4= 41 
 
 N1=0110(2)  ==> N1= 6 (10) 
 N2=1101(2)  ==> N2= 13(10) 

 N3=0111(2)  ==> N3= 7(10) 

 N4=1111(2)  ==> N3= 15(10) 
 

1 
1 0  

  1 0 1 
  0 1 1 0  
  1 1 0 1 
  0 1 1 1 

+ 1 1 1 1 
1 0 1 0 0 1 = 41(10) 
 
 
(Exercices Addition) 
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La soustraction: 
 
Réaliser la différence de N1 avec N2, où N1>N2 
 
 N1=1101(2)  ==> N1= 13(10) 
 N2=0110(2)  ==> N2= 6 (10) 
 
Donc le résultat est 7 (10) ==>  R=111 (2) 
 
nombre 1 N1=  1 11 10 1 
nombre 2 N2= - 1+0 1+1 1 0 
résultat   0 1 1 1 = 7(10) 
 
 
calculez 3(10) -4(10) = -1 sur 4 bits (ici, N1<N2 !) 
 
    10 10 1 1 
   -1 1+0 1 0 0 = ? infini ! 
  … 1 1 1 1 1 
(Exercices soustraction) 
 
 
La multiplication : 
 
Réaliser la multiplication de N1 avec N2 
 
 N1=1101(2)  ==> N1= 13(10) 
 N2=0110(2)  ==> N2= 6 (10) 
 
nombre 1 N1=  1 1 0 1 
nombre 2 N2= * 0 1 1 0 
résultat   0 0 0 0 
 1 1 1 1 0 1 .  
  1 1 0 1 . . 
 0 0 0 0 . . . 
 1 0 0 1 1 1 0  = 78(10) 

 

 

(Cf exercices Multiplication) 

 

 
La division : 
 
Le principe est le même qu'en base 10, mais peut être moins naturel ! 
(La division entière ou division euclidienne est une opération qui à deux entiers naturels 
appelés dividende et diviseur associe deux autres appelés quotient et reste) 
      
10110  |_ 101 
101        100 

    01 
       10 
         10  donc 1010 = 101*100+10 
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1.4 La base 8 (octal) 
 

Cette base est plutôt utilisée par les informaticiens. Les symboles sont {0,1,2,3,4,5,6,7}. 
 
Poids 8

4
 8

3
 8

2
 8

1
 8

0
 8

-1
 8

-2
 8

-3
 8

-4
  

 4096 512 64 8 1 1/8 1/64 1/512 1/4096 Base 10 

N1(B8) 7 7 7 7 7 0 0 0 0 =32767 

N2 (B8) 1 2 1 0 0 1 0 0 0 =5184,125 

N3 (B8) 0 0 0 0 1 0 1 0 0 =1,015625 

 
 
Base 2 -> 8 
Le passage de la base 2 à la base 8 se fait de façon immédiate en groupant les chiffres par 
3, ainsi : 
 
1011101,01101(2) = 1 | 011 | 101 , 011 | 010 = 1 3 5 , 3 2 (8) 
 
 
Base 10 -> 8 
Le passage de la base 10 à la base 8 se fait par divisions successives par 8 
450 |_8  56 |_ 8  7|_8 
 56   7  0 
  50   0  7 
    2  
 
Soit 450(8) = 702(10) 

 
 
Base 8 -> 2 
Le passage de la base 8 à la base 2 se fait en "éclatant" chaque chiffre octal en un nombre 
binaire codé sur 3 bits : exemple 743 (8) 
7 4 3 
111    101    011 
 
Soit 743(8) = 111101011(2) 

 

(Cf exercices Octal) 
(PB:3h: exercices  de rappel) 
 

1.5 La base 16 (hexadécimal) 

 
La base 16 est apparue avec la logique micro programmée et les microprocesseurs. 
L’ensemble des symboles contient 16 éléments. Comme il n’est pas possible 
traditionnellement d’écrire, avec un seul caractère, un chiffre dont la valeur est supérieur à 9, 
l’ensemble comporte des lettres. 
 
Par convention, A est équivalent à 10, B à 11 et ainsi de suite. L’ensemble des symboles de 
la base 16 est donc: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} 
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La base 16 est une forme contractée de la base 2. 
 
Poids 16

3
 16

2
 16

1
 16

0
 16

-1
 16

-2
 16

-3
  

 4096 256 16 1 1/16 1/256 1/4096 Base 10 

N1 0 1 F F 0 0 0 =511 

N2  0 1 2 A 1 0 0 =298,0625 

N3  0 0 0 1 0 0 0 =1,00 

 
Table de conversion: 
 

Décimale Binaire Octal Hexadécimale 
0 00000 0 0 

1 00001 1 1 

2 00010 2 2 

3 00011 3 3 

4 00100 4 4 

5 00101 5 5 

6 00110 6 6 

7 00111 7 7 

8 01000 10 8 

9 01001 11 9 

10 01010 12 A 

11 01011 13 B 

12 01100 14 C 

13 01101 15 D 

14 01110 16 E 

15 01111 17 F 

16 10000 20 10 

17 10001 21 11 

 
 
 
Base 10 -> 16 
Le passage de la base 2 à la base 16 se fait par divisions successives par 16 
249 |_ 16 15|_16 
  89 15  15   0  soit 249(10) = F9 (16) 
 
    9  
 
Base 2 -> 16 
Le passage de la base 2 à la base 16 se fait de façon immédiate en groupant les chiffres par 
4, ainsi : 
1011101,01101(2) = 101 | 1101 , 0110 | 10 = 5 D , 68 (16) 
 
Base 16 -> 2 
Le passage de la base 16 à la base 2 se fait en "éclatant" chaque chiffre octal en un nombre 
binaire codé sur 4 bits 
A B C (16)  
1010   1011   1100 
Soit ABC(16) = 101010111100(2) 

 
Base 16 -> 8 
Le plus simple est de passer par la base 2  
 
(exercices hexa) 
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2 La représentation des nombres  
 
Ces représentations font appel à des règles qui ont été adoptées pour des raisons de facilité 
de traitement matériel et logiciel.  

2.1 Représentation des nombres entiers non signés 

 
La technique consiste uniquement à transformer les nombres décimaux en binaires et de 
stocker chaque chiffre binaire sur un bit  
 
Exemple : 74(10) = 01001010(2) 

 

2.2 Représentation des nombres entiers signés : signe et valeur absolue 

 
La solution la plus simple. Un élément binaire est ajouté au module pour la représentation du 
signe. Habituellement, il est utilisé la correspondance suivante: 
 

0 ==> + 
1 ==> - 

 
 
Et le signe est placé à gauche du module (représentation sur 8 bits): 
 

Signe b6 b5 b4 b3 b2 b1 b0 

 
Exemple : -23(10) =  10010111(2) 
 
Sur 8 bits, on peut coder 27 nombre positifs (de +0 à 127) et 27 nombre négatifs (-0 à -127), 
on va donc de -127 à +127, avec 2 zéros !  
 
Seulement avec cette représentation, il y a un problème, on peut représenter 0 de deux 
façons : 00000000 et 10000000 sont respectivement égaux à 0 et -0.  
 
Exercices : 
 
Si on effectue une opération arithmétique entre des nombres négatifs et positifs, on obtient 
un résultat erroné. Exemple  3-4 = 3+(-4) = -1 
 
Dans la représentation "signe et valeur absolue“, -4(10) = 10000100 (2) 
 
Hors  3 + (-4) = (-7) au lieu de (-1) 
 
 0 0 0 0 0 0 1 1  
+ 1 0 0 0 0 1 0 0 
 1 0 0 0 0 1 1 1    = -7 (10)  !!! 
 
(Exercices "signe et valeur absolue") 
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2.2.1 Représentation des nombres en complément à 1 

 
Le complément à un est l'opération qui inverse la valeur de chacun des bits d'un nombre 
binaire. Il est la première étape du complément à deux. 
 
Pour obtenir un nombre à complément à 1 il suffit de permuter les « 0 » en « 1 » et les « 1 » 
en « 0 ». 
 
Par exemple 10010101 donne en complément à « 1 »  01101010 
      _ 
On  notera le N en complément à  1 :    N   
 
 

2.2.2 Représentation des nombres en complément à 2 

 
Cette représentation évite les inconvénients de la représentation classique, où apparaissait 
deux zéros. Ce procédé nous permettra de créer des nombres négatifs. 
         _             
(-N)=N+1 
 
 
Exemple : 
Pour obtenir la représentation sur 16 bits de l'entier -10(10) en complément à deux, on part de 
la représentation de 10(10)  en binaire, soit 0000 0000 0000 1010 
 
On complémente : 
 
   1111 1111 1111 0101 
Et on ajoute 1 
   0000 0000 0000 0001 
 
   ----------------------------- 
 
   1111 1111 1111 0110  soit  FFF6(16) ou 177768(8) 

 
 
 
Exercices : calculez 3-4    
 

 3-4 = 3+(-4) 

 On va coder (-4) 
On prend le nombre 4 : 0 0 0 0 0 1 0 0  
 
         1 1 
On inverse les bits :   1 1 1 1 1 0 1 1  
On ajoute 1 : 11111100  0 0 0 0 0 0 0 1 
    1 1 1 1 1 1 0 0 = -4(10)

       
 

 Le bit de signe (bit de poids fort) est automatiquement mis à 1 par l'opération 
d'inversion. 
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Calculons maintenant 3+(-4) : 
 

  0 0 0 0 0 0 1 1    = 3(10) 
 + 1 1 1 1 1 1 0 0  = -4(10) 
  1 1 1 1 1 1 1 1 
 
Conclusion : 3+(-4)=11111111 (2) 
 
Si l'on obtient un résultat négatif (bit de poids fort à 1), il faut refaire le complément à 
deux pour obtenir l'équivalent décimal positif 
 
Le complément à deux de 11111111 est 00000001 soit 1 en décimal,  
donc 11111111 = (-1) en décimal. 
 
La représentation en complément à 2 permets de coder, sur 8 bits, les n ombres de -128 à 
+127, avec seul 1 zéro !  

 
Exemple sur 4 bits : 
 

 Non signé Représentation 
classique 

Représentation en 
complément à 2 

0000 0 0 0 

0001 1 1 1 

0010 2 2 2 

0011 3 3 3 

0100 4 4 4 

0101 5 5 5 

0110 6 6 6 

0111 7 7 7 

1000 8 0 -8 

1001 9 -1 -7 

1010 10 -2 -6 

1011 11 -3 -5 

1100 12 -4 -4 

1101 13 -5 -3 

1110 14 -6 -2 

1111 15 -7 -1 

 
 
(Exercices complément à 2) 
 
 

2.3 La représentation BCD (ou DCB "décimal codé binaire") 

 
Dans certains cas, on peut préférer aux représentations binaires décrites ci-dessus un 
codage qui permette de passer plus facilement du code décimal d'un nombre à sa 
représentation en machine. Le codage couramment utilisé porte le nom de BCD (Binary 
Coded Decimal). 
 
Chaque chiffre d'un nombre représenté en base 10 est codé sur quatre bits (un quartet) 
Avec n bits (n multiple de 4), il est possible de représenter les nombres entre 0 et 10n/4-1 
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Ainsi, l'entier 1992 sera représenté par : 0001 1001 1001 0010 (2) 
 
    

0 0000 

1 0001 

3 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

 
Les quartets 1010 à 1111 sont des combinaisons inutilisées donc illégales. 
 
Le codage du signe peut être fait séparément en lui réservant un demi-octet (nibble ou 
quartet) auquel on affectera une valeur en dehors de l'intervalle [0,9]. 
 
Par convention,  

- le signe "-" sera codé 1101, càd D(16)  
- le signe "+" sera codé 1100, càd C(16) 

 
 alors -1992 sera codé D1992(16) 
 
Remarques 
6+5 = 0110 + 0101 = 1011 ce qui est interdit en BCD ! 
Il faut donc ajouter 6 (les 6 codes non significatifs) ce qui donne 1011+0110 = 1 0001 ce qui 
donne bien 11 en décimal ! (0001 0001) 
 
 
Exercice :  
Calculez la valeur décimale de :   0001100110010100 (2) 
     0001  1001  1001  0100 (2) 
           1*1000   +  9*100  +  9*10   +  4*1 
     1994 
 
Calculez la valeur décimale de :   1010 (2) 
1010 ne fait pas 10 (10) car 1010 fait parti des valeurs interdites 
10 = 0001 0000 ! 
 
 
Calculez 12+6 :   00010010 (12) 
    + 00000110 (6) 
     00011000 (=18) 
 
 
Calculez 22+8    00100010 (22) 
    + 00001000 (8) 
     00101010       Valeur interdite ! on rajoute 6 ! 
    + 00000110 (6) 
     00110000 (=30) 
 
(Exercices "BCD") 
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Il existe des variantes du codage BCD: 
 
Le code Excess 3 (XS 3) 
 
Le codage binaire excédent 3 qui consiste à représenter le chiffre à coder + 3. 
Par exemple, pour coder 48 : 

 
    4 8 
  +3  +3 
    7 11 
soit              0111 1011 
 
En Excess 3, les codes non valides sont : 0000 (zéro),0001 (un),0010 (deux),1101 (treize), 
1110 (quatorze) et 1111 (quinze) 
 
 
Le code Aïken 
 
Le code Aiken où 0, 1, 2, 3, 4 sont codés comme en BCD et 5, 6, 7, 8, 9 sont codés de 1011 
à 1111. Il permet d'obtenir le complément à 9 en permutant les 1 et les 0.  
 
 

2.4 Code à distance unité (code Gray ou code Réflechi) 

 
Ce codage permet de ne faire changer qu'un seul bit à la fois quand un nombre est 
augmenté d'une unité. Le code distance à unité le plus fréquemment utilisé est le code Gray 
ou code réfléchi.  
 
 
Le code Gray est un code non pondéré (aucun poids est affecté à la position d'un bit. On 
convient simplement d'un tableau de correspondances entre les objets à coder et une 
représentation) 
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Exemple le code Gray : Pour passer d'une ligne à la suivante, on inverse le bit le plus à 
droite possible conduisant à un nombre nouveau 
 
 

Base 10 Code Gray 

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 1 

3 0 0 1 0 

4 0 1 1 0 

5 0 1 1 1 

6 0 1 0 1 

7 0 1 0 0 

8 1 1 0 0 

9 1 1 0 1 

10 1 1 1 1 

 
 
Ce code à été imaginé pour éviter les problèmes de transition car lorsque l’on passe de n à n+1 
dans un code binaire on peut lire plusieurs états parasites, exemple pour passer de 3 à 4 
 
  3 =====>  0011 
    0010 états parasite de transition 
    0000 états parasite de transition 
  4 =====>  0100 
 
On peut donc lire 2 puis 0 et enfin 4!!  
 
Alors que en code Gray le problème disparaît. 
 
  3 =====> 0010 
  4 =====> 0110 
 
 
Ce code gray est surtout utilisé pour des capteurs de positions, en effet, un seul bit 
change à chaque fois, ce qui évite toute ambiguïté de lecture. 
 
Le code Gray sert également dans les tables de Karnaugh utilisées lors de la conception de 
circuits logiques. 
 
 
 (Exercices Code Gray) 
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2.5 Les nombres réels 

 
Deux méthode permettent de représenter les nombres réels : les représentations en virgule 
fixe et virgule flottante 
 

2.5.1 Représentation en Virgule fixe  

Cette technique fixe arbitrairement la position de la virgule "entre" deux chiffres de la 
représentation binaire 
 
Exemple : 12,75(10) à représenter en virgule fixe sur un octet. 
On suppose que la virgule si situe entre le bit 3 et 4 
12 (10)= 1100(2) 
0,75 (10) = 0,11(2) 
1100,1100 
 

2.5.2 Représentation en Virgule flottante 

 
Les nombres à virgule flottante sont les nombres les plus souvent utilisés dans un 
ordinateur. Ce sont des approximations rationnelles de nombres réels. 
 
Les nombres à virgule flottante possèdent  

- un signe s (dans {-1, 1}),  
- une mantisse entière m (parfois appelée significande)  
- un exposant e.  
 
Un tel triplet représente un réel s*m*be où b est la base de représentation (parfois 2, 
mais aussi 16 pour des raisons de rapidité de calculs, ou éventuellement toute autre 
valeur).  
 
En faisant varier e, on fait « flotter » la virgule décimale. Généralement, m est d'une taille 
fixée. 

 
Ceci s'oppose à la représentation dite en virgule fixe, où l'exposant e est fixé. 
 
Rappel : 

 (pi) 3,14 

On peut noter    =  314*10-2 

    =  0,314*101 

    =  0,00314*103 

    Mantisse    exposant 
 
Les différences de représentation interne des nombres flottants d'un ordinateur à un autre 
obligeaient à reprendre finement les programmes de calcul scientifique pour les porter d'une 
machine à une autre jusqu'à ce qu'un format normalisé soit proposé par l'IEEE. 
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Big et Little Endian 
 
Description d'une façon (parmi d'autres) dont on stocke les nombres dans plusieurs octets : 
l'octet de poids fort est stocké avant l'octet de poids faible. Utilisé sur la famille des 680x0 de 
Motorola, c'est la façon habituelle de voir un nombre. Opposé à little endian.  
 

 
 

La représentation en Big Endian ou Little Endian consiste donc à déterminer l'arrangement 
des octets. 
 
 
Exemple :  
 
01000001000010100000000000000000 (2) 

  

Inversion de l'ordre des octects 
 

00000000 00000000  00001010  01000001 

0 0 0  0  0   A 4  1  = 00 00 0A 41 (16) 

 

 

Il n'y a pas de solution miracle au problème de l'arrangement des octets (Endian). Chacun 
doit s'entendre sur le format d'emmagasinage des données. Un des processeurs aura à 
traduire (changer l'ordre) des données provenant de l'autre processeur. 
 
Certains nouveaux processeurs (tel que le PowerPC) peuvent être Bi-Endian (ils peuvent 
utiliser un format ou l'autre) -- mais habituellement le système d'exploitation qui les utilise est 
dépendant d'un certain type «d'Endian». Alors ils sont fixés sur une méthode et rarement 
vont-ils utiliser l'autre.  
 
Quelques faits : les processeurs Intel (x86 et Pentium) sont Little Endian et les processeurs 
Motorola (la série 680x0) sont Big Endian. Le MacOS est Big Endian et Windows est Little 
Endian.
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2.5.3 Exemple de représentations flottantes  

 
Norme IEEE 754 (Institue of Electrical and Electronics Engineers) 
 
La norme IEEE 754 (reprise par la norme internationale CEI 60559) spécifie deux formats de 
nombres en virgule flottante et les opérations associées. La quasi-totalité des architectures 
d'ordinateurs actuelles, y compris PowerPC, et AMD64, incluent une implémentation 
matérielle des calculs sur flottants IEEE, directement dans le microprocesseur, garantissant 
une exécution rapide. 
 
Les flottants IEEE peuvent être codés sur 32 bits (« simple précision ») ou 64 bits (« double 
précision »). Il est aujourd'hui très rare que des programmes utilisent la simple précision, en 
tout cas sur station de travail. La répartition des bits est la suivante : 
 

 Signe Exposant Mantisse 

Simple précision 1 bit 8 bits 23 bits 

Double précision 1 bit 11 bits 52 bits 

 
Simple précision  : seeeeeeeemmmmmmmmmmmmmmmmmmmmmmm 
 
 
La valeur d'un nombre ainsi codé est donc : 
 
(-1)S *  2(E-127) * (1,M )  pour les nombres codés en simple précision 
 
(-1)S * 2(E-1023)  * (1,M )  pour les nombres codés en double précision 
 
 
Exemple : 
 
On désire coder 2,5(10) en flottant de type short real dans la norme IEEE-754 
 

- Convertir 2,5 en binaire = 10,1(2) 
 
- Normaliser -> 1,01*21  (mantisse 01, exposant 1) 
       
- Calculer la représentation de l'exposant  d'après la formule : (-1)S *  2(E-127) * (1,M )  

 
e-127 =1 
e =127+1 
e =128 

 
- Convertir l'exposant en binaire 128 (10) = 10000000 (2) 

 
- Représenter la mantisse en binaire sur 23 bits= 01000000000000000000000 

 
- Calculer le bit de signe, ici s=0 

 
- La représentation est donc :  

01000000001000000000000000000000 

seeeeeeeemmmmmmmmmmmmmmmmmmmmmmm 
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On désire coder 1(10) en flottant de type short real dans la norme IEEE-754 
 
- Convertir 1 en binaire = 1,0(2) 
- Normaliser -> 1,0*20  (mantisse 0, exposant 0) 
       
- Calculer la représentation de l'exposant  d'après la formule : (-1)S *  2(E-127) * (1,M )  

 
e-127=0 
e=127 
 

- Convertir l'exposant en binaire 127 (10) = 01111111 (2) 
 

- Calculer le bit de signe, ici s=0 
 

- La représentation est donc 0  |  01111111 |  000 0000 0000 0000 0000 0000  
 

- 0011 1111 1000 0000  0000  0000  0000  0000   
  3F   80   00      00  (16) 

 
 
 
 

Précautions d'emploi 
 

Certains nombres ne peuvent pas être représentés : 
 

 Les nombres positifs supérieures à 1,11111… * 2127 
127 est la plus grande caractéristique codable 
 

 Les nombres négatifs inférieurs à -3,4 * 1038 
 

 Les nombres trop proches de 0 
La plus petite caractéristique codable est 2-126, la plus petite mantisse est 
0,000000…1 (2-23) 
Le plus petit nombre codable est donc 2-149 = 1,5*10-45 

 
 
La représentation en virgule flottante est donc source d'imprécision  
 
 
Rappels 
 
a-b=c ↔ a=c+b 
a+b=c ↔ a=c-b 
 
a-b=-c ↔ a=-c+b 
a+b=-c↔ a=-c-b 
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3 La représentation des caractères 
 
Les caractères (lettres, chiffres, symboles de ponctuation) sont généralement codés sur un 
octet. Les codes les plus fréquemment utilisés sont le code ASCII (American Standard Code 
for Information Interchange) et l'EBCDIC (Extended Binary Coded Decialm Interchange 
Code) 

3.1 ASCII (American Standard Code for Information Interchange) 

 

Le code ASCII représente chaque caractère sur 7 bits (on parle parfois de code ASCII 
étendu sur 8 bits). On peut donc coder 27 = 128 caractères. 
 
 

- Les caractères de 0 à 31 ainsi que le 127 ne sont pas affichables, et correspondent à 
des directives de terminal ou des fonctions de commandes 

- Le caractère 32 est l'espace blanc.  
- Les autres correspondent aux chiffres, aux lettres majuscules et minuscules et à 

quelques symboles de ponctuation. 
 
 

  000   001   010    011   100   101   110   110 
0000  NULL  DLE   SP     0      @     P    `    p 
0001  SOH   DC1    !     1     A     Q    a     q 
0010  STX   DC2    "     2     B     R    b    r 
0011  ETX   DC3    #     3     C     S    c    s 
0100  EOT   DC4    $     4     D     T    d    t 
0101  ENQ   NAK    %     5     E     U    e    u 
0110  ACK   SYN    &     6     F     V    f    v 
0111  BEL   ETB     ‘     7     G     W    g    w 
1000  BS   CAN    (     8     H     X    h    x 
1001  HT   EM    )     9     I     Y    i    y 
1010  LF   SUB    *     :     J     Z    j    z 
1011  VT   ESC   +     ;     K     [    k    { 
1100  FF   FS   ,     <     L     \    l    | 
1101  CR   GS   -     =     M     ]    m    } 
1110  SO   RS   .     >     N     ^    n    ~ 
1111  SI   US   /     ?     O     _    o   DEL 

                         Table ASCII 7 bits 

 

3.2 ASCII Etendu 

 
Comme ce standard n'utilise que 7 bits (au lieu de 8), il reste 128 caractères disponibles 
pour les langues nationales. Par exemple, l'ISO 8859-1, appelée aussi Latin-1, étend l'ASCII 
avec les caractères accentués utiles aux langues d'Europe occidentale comme le français. 
(pages de code) 
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 ISO 8859-1 (latin-1 ou européen occidental) — probablement la partie la plus 
largement utilisée de ISO 8859, couvrant la plupart des langues européennes 
occidentales : l'allemand, l'anglais, le basque, le catalan, le danois, l'écossais, 
l'espagnol, le féringien, le finnois (partiellement²), le français (partiellement²), 
l'islandais, l'irlandais, l'italien, le néerlandais (partiellement¹), le norvégien, le 
portugais, le rhéto-roman et le suédois, certaines langues européennes sud-
orientales (l'albanais), ainsi que des langues africaines.   
 
Le symbole de l'euro est dans la version révisée ISO 8859-15 (latin-9).  

 

 ISO 8859-2 (latin-2 or européen central) — supporte les langues d'Europe centrale 
ou de l'Est basées sur un alphabet romain, y compris le polonais, le tchèque, le 
slovaque, le slovène et le hongrois. Le symbole de l'euro manquant est présent dans 
la version ISO 8859-16.  

 

 ISO 8859-3 (latin-3 or européen du Sud) — le turc, le maltais, et l'espéranto ; 
largement supplanté par ISO 8859-9 pour le turc, et par Unicode pour l'espéranto.  

 

 ISO 8859-4 (latin-4 or européen du Nord) — l'estonien, le letton, le lituanien, le 
groenlandais, et le sami.  

 

 ISO 8859-5 (cyrillique) — Couvre la plupart des langues slaves utilisant un alphabet 
cyrillique, y compris le biélorusse, le bulgare, le macédonien, le russe, le serbe et 
l'ukrainien.  

 

 ISO 8859-6 (arabe) — Couvre les glyphes arabes les plus communs, mais pas tous.  
 

 ISO 8859-7 (grec) — Couvre la langue grecque moderne (orthographe monotonique). 
Peut être utilisé aussi pour le grec ancien écrit sans les accents ou dans 
l'orthographe monotonique, mais manque les signes diacritiques pour l'orthographe 
polytonique. Ceux-ci ont été introduits avec Unicode.  

 

 ISO 8859-8 (hébreu) — Couvre l'alphabet hébraïque moderne tel qu'il est utilisé en 
Israël. En pratique, deux codes différents existent : logique et visuel.  

 

 ISO 8859-15 (latin-9 ou parfois de façon impropre latin-0) — une révision de 8859-1 
qui abandonne quelques symboles peu utilisés, les remplaçant avec le symbole 
d'Euro € et les lettres Š, š, Ţ, ţ, Œ, œ, et Ÿ, qui complète la couverture du français et 
du finlandais.  

 

 ISO 8859-16 (latin-10 or européen du Sud-Est) — pour l’albanais, le croate, le 
hongrois, l'italien, le polonais, le roumain et le slovène, mais aussi le finlandais, le 
français, l'allemand et le gaélique irlandais (en nouvelle orthographe). Cette police 
mise plus sur les lettres que les symboles. Le signe de monnaie est remplacé avec le 
symbole d'Euro. Pour autant, le format n'est pas totalement universel : 

 

3.3 Fichiers ASCII 
 

L'ACSII n'est pas un format totalement universel : 
- sous Mac OS (Apple Macintosh), la fin de ligne est indiquée par un retour de chariot (CR)  
- sous Linux, la fin de ligne est indiquée par un saut de ligne (LF)  
- sous Microsoft Windows, la fin de ligne est indiquée par un retour chariot suivi d'un 

saut de ligne (CRLF).  
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Ainsi, lorsque l'on ouvre un fichier ASCII créé par un système sur un autre système, il faut en 
général faire de la mise en forme (c'est-à-dire refaire les fin de ligne) afin de pouvoir l'afficher 
et le lire de manière confortable. Toutefois, cela ne perturbe en général pas les programmes 
utilisant les fichiers ASCII. 
 

3.4 Exemples 

 
Exemple :  la chaîne de caractère "Ordinateur" sera codée : 
 O r d i n a t e u r 
 4F  72  64  69  6E  61  74  65  75  72 (16) 
 
Exemple : la séquence binaire 1000001100110010011001001111  
Représente le message ALLO  
 
Quelques exemples de représentations internes sur une machine, où les entiers et réels sont 
codés sur 32bits, en complément à 2 pour les entiers et en format IEEE-754 pour les 
réprésentations flottantes. Les caractères sont codés en ASCII 
 

Information à coder Nombre de bits occupés Représentation interne HEXA  

Chiffre 1 en entier 32 00000001 

Chiffre -1 en entier 32 FFFFFFF 

Chiffre 1 en flottant  32 Exp 7F, mantisse 0, signe 0 

Chiffre -1 en flottant 32 Exp 7F, mantisse 0, signe 1 

Caractère "1" 8 31 

Caractère "+1" 16 2B31 

Caractère "-1" 16 2D31 

Caractère "1.0" 24 312E30 

Caractère "-1.0" 32 2D312E30 

   

3.5 EBCDIC (Extended Binary Coded Decimal Interchange Code) 

 
L'EBCDIC est un mode de codage des caractères sur 8 bits créé par IBM à l'époque des 
cartes perforées. Il existe 6 versions différentes, incompatibles entre elles. Ce mode de 
codage a été critiqué pour cette raison, mais aussi parce que certains caractères de 
ponctuation ne sont pas disponibles dans certaines versions.  

3.6 UNICODE 

 
Unicode est un standard informatique qui vise à donner à tout caractère de n'importe quel 
système d'écriture de langue un identifiant numérique. Unicode a été développé dans le but 
de remplacer l'utilisation de pages de code nationales. Dans la pratique, tous les systèmes 
d'écriture ne sont pas encore présents, car un travail de recherche documentaire auprès de 
spécialistes peut encore s'avérer nécessaire pour des caractères rares ou des systèmes peu 
connus. 
 
Unicode accepte trois formes de présentation pour représenter un caractère (au sens de 
symbole) : l'UTF-8, l'UTF-16 et l'UTF-32. Le chiffre après UTF représente le nombre de bits 
sur lequel le caractère est codé 
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4 La représentation des Images 
 
Toute image affichée sur un écran ou une imprimante est constituée de pixels. 
Le pixel ou point est l'unité de base d'une image numérique. Son nom provient de 
l'expression anglaise "picture element", c'est-à-dire, « élément d'image » ou « point 
élémentaire ».  
 

4.1 BITMAP : Images 24 bits (ou « couleurs vraies ») 

 
Chaque point de l'image est mémorisé. Ces images sont très gourmandes en mémoire 
compte tenu que chaque pixel est codé sur un bit (noir & blanc) ou sur 3 octets pour les 
images couleur. 
 
Couleur 
Chaque octet correspond à l'une des 3 couleur primaires (Rouge, Vert, Bleu). Les 256 
couleurs codables sur un octet correspondent au poids de chacune des couleurs primaires 
qui compose le point coloré. 
 
Ce système donne un total de 16,5 millions de pixels codables (256*256*256), ce qui est 
largement suffisant car l'œil humain est loin de pouvoir en discerner autant. 
 
 

R V B Couleur 

0 0 0 noir 

0 0 1 nuance de noir 

255 0 0 rouge 

0 255 0 vert 

0 0 255 bleu 

128 128 128 gris 

255 255 255 blanc 

 
Calculez la place mémoire nécessaire pour réprésenter les images suivantes : 

 La résolution du VGA est de 640 x 480, soit 307 200 pixels (900Ko);  

 La résolution du Super-VGA est de 800 x 600, soit 480 000 pixels (1406 Ko);  

 La résolution du XGA est de 1 024 x 768, soit 786 432 pixels(2,25 Mo) 
 

4.2 BITMAP : Images à palettes, images en 256 couleurs (8 bits) 

 
On utilise souvent un autre codage des images BITMAP, le codage à l'aide de la "palette de 
couleur": le logiciel détermine 256 couleurs importantes dans l'image, ces couleurs sont 
codées sur 3 octets (mais une seule fois), ensuite chaque pixel est codé sur 1 octet qui 
correspond à une entrée dans la palette de couleurs 
 
De cette façon, on divise à peu près par 3 l'encombrement mémoire d'une image, mais on 
perd en nuance et contraste. C'est la technique utilisée pour les images BMP. 
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4.3 BITMAP : Images avec gestion de la translucidité (canal alpha) 

On peut attribuer à une image un canal supplémentaire, appelé canal alpha, qui définit le 
degré de transparence de l'image. Il s'agit d'un canal similaire aux canaux traditionnels 
définissant les composantes de couleur, codé sur un nombre fixe de bits par pixel (en 
général 8 ou 16). On échelonne ainsi linéairement la translucidité d'un pixel, de l'opacité 
complète à la transparence. 
 

4.4 Les images vectorielles 

Les images sont représentées à l'aide d'équations mathématiques, portions de droite et de 
courbes. Un cercle sera déterminée par les coordonnées du centre et la valeur du rayon, 
avec éventuellement la couleur et l'épaisseur du trait. 
 
L'intérêt de cette méthode est la possibilité de modifier la taille du dessin dans altérer la 
définition et les proportions. (ex: WMF) 
 
 
L'usage de prédilection de ce type d'images concerne les schémas qu'il est possible de 
générer avec certains logiciels de CAO (Conception Assistée par Ordinateur) comme 
AutoCAD ou CATIA. Ce type d'images est aussi utilisé pour les animations Flash, utilisées 
sur Internet pour la création de bannières publicitaires, l'introduction de sites web, voire des 
sites web complets. 
 

4.5 Quelques Format d'images 

4.5.1 GIF (Graphics Interchange Format) 

Le Graphics Interchange Format (littéralement « format d'échange de graphiques »), plus 
connu sous l'acronyme GIF, est un format d'image numérique couramment utilisé sur le 
Web. 
 
GIF a été mis au point par CompuServe en 1987 pour permettre le téléchargement d'images 
en couleur. Ce format utilise l'algorithme de compression LZW, nettement plus efficace que 
l'algorithme RLE utilisé par la plupart des formats alors disponibles (PCX, ILBM puis BMP). 
 
LZW 
LZW (Cet algorithme est appelé « à dictionnaire », car il se base sur la répétition de chaînes 
de caractères dans un même flux) 
 
RLE 
On dispose d'un compteur, en général sur un octet, indiquant combien de points blancs ou 
noirs se suivent. Exemple : WWWBWWWWWWWWWWBBBBBWBBB 

3W1B10W5B1W3B 
 

4.5.2 JPEG 

Bien que plus intéressant pour des photographies ou des images lourdes, la compression 
JPEG provoque une perte d'information (algorithme de compression destructif) pouvant 
aboutir à une perte de qualité visible si l'utilisateur privilégie un taux de compression élevé, 
particulièrement lorsque l'image contient des changements nets de couleur ou peu de 
couleurs (par exemple des logos, captures d'écran, diagrammes, ...). Le format JPEG ne 
gère ni les animations ni la transparence 
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4.5.3 TIFF 

TIFF est un format extrêmement flexible. 
Il est notoirement connu pour permettre l'enregistrement des données multi-octets au format 
big endian ou little endian.  
Il permet d'utiliser de nombreux types de compression, avec ou sans perte de données : 
(brut, PackBits, LZW, CCITT Fax 3 et 4, JPEG.) 
Cette considérable flexibilité fait que TIFF est utilisé dans des applications très diverses, des 
scanners industriels aux appareils photo numériques en passant par les imprimantes. En 
revanche cela fait également qu'il n'existe pas de logiciel capable d'afficher n'importe quelle 
image TIFF.  Un fichier TIFF commence par les deux caractères ASCII MM pour big endian 
ou II pour little endian. Les deux octets suivants représentent 42, en big endian ou little 
endian 
 

4.5.4 PNG (Portable Network Graphics) 

Le PNG (Portable Network Graphics) est un format d'images numériques libre de droit, qui a 
été créé pour remplacer le format propriétaire GIF, dont la compression était soumise à un 
brevet. Le PNG est un format non destructeur spécialement adapté pour publier des images 
simples comprenant des aplats de couleurs (surface de couleur uniforme). 
Compression Deflate (Deflate est un algorithme de compression de données sans pertes qui 
couple l'algorithme LZ77 et le codage de Huffman (compression de type statistique)) 
 
Lorsque l'image PNG utilise une palette de 256 couleurs maximum, il n'est alors possible 
d'utiliser qu'un seul niveau de transparence (totalement transparent ou totalement opaque). 
 
 
 
RAPPEL 

 
Type 

(bitmap/ 
vectoriel) 

Compression 
des données 

Nombre de couleurs 
supportées 

Affichage 
progressif 

Animation Transparence 

 JPEG Bitmap 
Oui, 

réglable 
(avec perte) 

16 millions Oui Non Non 

 
JPEG2000 

Bitmap 
Oui, 

avec ou sans perte 
16 millions Oui Non Non 

 GIF Bitmap 
Oui, 

Sans perte 
256 maxi (palette) Oui Oui Oui 

 PNG Bitmap 
Oui, 

sans perte 

Palettisé (256 couleurs ou moins) 
ou 

16 millions 
Oui Non 

Oui 
(couche 
Alpha) 

 TIFF Bitmap 
Compression ou pas 
avec ou sans pertes 

de monochrome à 16 millions Non Non 
Oui 

(couche 
Alpha) 

 SVG vectoriel 
compression 

possible 
16 millions 

* ne s'applique 
pas  

Oui 
Oui 

(par nature) 

 

4.6 Protection des Droits d'Auteurs  

 
Pour tenter de faire respecter le droit d'auteur (en France) et le copyright (dans presque tous 
les autres pays), il existe des techniques de marquage numérique d'une image 

4.6.1 Protection par signature visible 

Cette technique consiste à intégrer une indication sur l'image, par exemple l'organisme ou 
l'auteur à qui appartient l'image, afin de dissuader les pirates de s’en servir. L'inconvénient 
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de cette méthode est qu'il est très facile d'éliminer ce type de tatouage avec un outil de 
traitement d'images, puisque le tatouage est visible. 
 

4.6.2 Protection par signature cryptée 

 
Cette technique consiste à cacher le tatouage dans les données de l'image. Cette approche 
a l'avantage de ne pas gêner la lecture de l'image par le simple spectateur tout en 
permettant une facile identification.  
 
L'auteur en tire un avantage complémentaire : l'éventuel pirate inattentif ne sera pas tenté de 
retirer ou modifier la signature ; le pirate plus volontaire verra son activité illégale rendue un 
peu plus difficile ou facilement prouvable (par la seule présence du tatouage). 
 
Sténographie :  
 
Usage des bits de poids faible d'une image 
L'idée est de prendre un message et de le modifier de manière aussi discrète que possible 
afin d'y dissimuler l'information à transmettre. Le message original est le plus souvent une 
image.  
 
La technique de base, dite LSB pour Least Significant Bit, consiste à modifier le bit de poids 
faible des pixels codant l'image : une image numérique est une suite de points, que l'on 
appelle pixel, et dont on code la couleur a l'aide d'un triplet d'octets par exemple pour une 
couleur RGB sur 24 bits. Chaque octet indique l'intensité de la couleur correspondante 
(rouge, vert ou bleu) par un niveau parmi 256.  
 
Passer d'un niveau n au niveau immédiatement supérieur (n+1) ou inférieur (n-1) ne modifie 
que peu la teinte du pixel, or c'est ce que l'on fait en modifiant le bit de poids faible de l'octet. 


