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NUMERATION

1 Lanumération

La nécessité de quantifier (attribuer une grandeur mesurable), notamment pour les échanges
commerciaux, s’est faite dés la structuration de la vie sociale. Les tentatives de
représentation symbolique de quantités furent nombreuses; batons, chiffres romains, etc..
Avant que ne s’impose la numération arabe, universellement adoptée étant donné sa bonne
capacité a traiter les calculs courants.

L’emploi quotidien de ce systéme nous fait oublier la structure et les régles qui régissent

I'écriture des nombres, notamment la notion de base acquise en cours primaire.

1.1 Principe de la numération

La numération traditionnelle représente un nombre par la juxtaposition de symboles, appelés
chiffres, pris parmi un ensemble. Par exemple, dans le systeme décimal (10), cet ensemble
contient dix symboles différents.

{0,1,2,3,4,5,6,7,8,9}
On peut trés bien en utiliser d’autres!

{(0,0,0,4¢,% X,KA,38,<,8)

Cette derniére symbolique n’étant pas pratique nous la laisserons de coté pour reprendre
nos symboles habituels.

1.2 LaBase 10 (numération décimale)

Un nombre est dit de Base 10 si son type de représentation s’effectue avec 10 symboles.
{0,1,2,3,4,5,6,7,8,9}

Lorsqu’un nombre est écrit, la position respective des chiffres détermine leur poids :
..... Milliers, centaines, dizaines, unités, dixiemes, centiémes..
0,1,2,3,4,5,6,7,8,9,10,11,12,13...

Par exemple 1994

Milliers Centaines Dizaines Unités
Poids 1000 100 10 1
Nombre 1 9 9 4
...01994,000...= ... (0 * 10000) + (1 * 1000) + (9*100) + (9*10)+ (4 * 1) + (0* 0.1)
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ou 3.14
3,14= 3*1+1*0.1+4*0.01

Pour se repérer, la virgule sépare les unités des dixiemes.

1.2.1 Rappel sur les puissances de 10

10° 10° 10* 10° 10° 10! 10° 10t 10 103
1000000 | 100000 | 10000 | 1000 | 100 10 0 0.1 0.01 0.001
Méga Kilo Unité Milli

Par exemple on peut noter  (pi) 314*10°
ce qui revient a déterminer 1=314*0.01=3.14

Ce type de notation est souvent utilisé pour les NOMBRES trés petit ou trés grands.
Par exemple la terre est distante de la lune de 3844*10° métres.
Sans cette notation on devrait écrire: 384 400 000 metres.

ou la masse au repos d’'un électron M=0.910953*10-30 kg
M=0.0000000000000000000000000000910953 kg

1.3 LaBase?2?

1.3.1 Présentation du binaire

En logique il est trés simple de différencier 2 états, ouvert fermé, éteint allumé...
Donc 2 états, donc 2 symboles.. {0,1}.
On appel aussi la base 2 le Binaire, car il n’y a que 2 élément {1,0}

Passage en base 2.

BASE 10 BASE 2
0000 0000
0001 0001
0002 0010
0003 0011
0004 0100
0005 0101
0006 0110

Le principe reste le méme qu’en base 10.
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La position du chiffre détermine le poids du nombre.

Poids 24 23 22 21 20 2-1 2—2 2—3 2-4

16 8 4 2 1 1/2 1/4 1/8 1/16 | Base 10
N1 0 0 1 0 0 0 0 0 0 =4
N2 2) 1 0 1 0 0 1 0 0 0 =20,5
N3 (2) 0 0 0 0 1 0 1 0 0 =1,25
N1=0*16 + 0*8 + 1*4 + 0*2 + 0*1 + 0*0.5 + 0*0.25 + 0*0.125 + 0*0.0625 = 4
N2=1*16 + 0*8 + 1*4 + 0*2 + 0*1 + 1*0.5 + 0*0.25 + 0*0.125 + 0*0.0625 = 20,5
N3=0*16 + 0*8 + 0*4 + 0*2 + 1*1 + 0*0.5 + 1*0.25 + 0*0.125 + 0*0.0625 = 1,25

(Exercices de conversion)

Le passage de la base 10 a la base 2 se fait par divisions successives par 2 pour la partie

entiére, et par la multiplication par 2 pour la partie fractionnaire
Soit le nombre 20,375 en base 10
20_2
0 10 |2
0 5|2
1 2.1
0 1

Le résultat est lu a "lI'envers" : 10100

Pour la partie fractionnaire, on effectue des multiplications par 2
Ainsi, pour 0,375

0,375 * 2 = 0,75
0,75 * 2 = 1,50
0,50 * 2 = 1

Le résultat est "lu a I'endroit" : 0,011

20,37540) = 10100,011

(exercices "systéme Binaire")
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1.3.2 Les opérations simples en base 2

Toutes les opérations arithmétiques de base connues en base 10 sont applicables en base 2.

L’addition:

Réaliser la somme de N1 avec N2

N1=0110(2) ==> N1=6 (10)
N2:1101(2) ==> N2= 13(10)

Donc le résultat est 19 (d) ==> R=10011 (b)

retenue 1 1

nombre 1 N1= 0 1 1 0
nombre 2 N2= + 1 1 0 1
résultat = 1 0 0 1 1

Comme dans le systéme décimal (base 2), lorsqu’il y a un dépassement (plus de symboles
au dessus) on rajoute une colonne a I'extréme gauche de poids plus fort.
12*+12=10 (on lira 'un zéro' et non pas dix!)

Réaliser la somme de N1 + N2 + N3 + N4= 41

N:L:OllO(z) ==> N1=6 (10)
N2=1101(2) ==> N2= 13(10)
N3:0111(2) ==> N3= 7(]_0)
N4:1111(2) ==> N3= 15(10)
1
1 0
1 0 1
0 1 1 0
1 1 0 1
0 1 1 1
+ 1 1 1 1
1 0 1 0 0 1 = 41(10)
(Exercices Addition)
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La soustraction:

Réaliser la différence de N1 avec N2, ou N1>N2

N1=1101(2) ==> N1= 13(10)
N220110(2) ==> N2=6 (10)
Donc le résultat est 7 0y ==> R=111
nombre 1 N1= 1 11 10 1
nombre 2 N2= - 1.0 1.1 1 0
résultat 0 1 1 1 = 7(10)
calculez 30y -4(10)= -1 sur 4 bits (ici, N1<N2 !)
10 10 1 1
-1 1+0 1 0 0 = ? infini !
1 1 1 1 1
(Exercices soustraction)
La multiplication :
Réaliser la multiplication de N1 avec N2
N1=1101p ==> NI1= 139
N2=0110, ==> N2=6 (9
nombre 1 N1= 1 1 0 1
nombre 2 N2= * 0 1 1 0
résultat 0 0 0 0
! ! 1 1 0 1
1 1 0 1
0 0 0 0 : . :
1 0 0 1 1 1 0 = 7810)

(Cf exercices Multiplication)

La division :

Le principe est le méme qu'en base 10, mais peut étre moins naturel !
(La division entiere ou division euclidienne est une opération qui a deux entiers naturels
appelés dividende et diviseur associe deux autres appelés quotient et reste)

10110 |_101
101 100
01
10
10 donc 1010 = 101*100+10
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1.4 Labase 8 (octal)

Cette base est plut6t utilisée par les informaticiens. Les symboles sont {0,1,2,3,4,5,6,7}.

Poids 8" 8° 8° 8’ 8’ 87 87 8~ 8"

4096 | 512 64 38 1 1/8 1/64 1/512 1/4096 | Base 10
N1(B8) 7 7 7 7 7 0 0 0 0 =32767
N2 (B8) |1 2 1 0 0 1 0 0 0 =5184,125
N3 (B8) |0 0 0 0 1 0 1 0 0 =1,015625
Base2 ->8

Le passage de la base 2 a la base 8 se fait de fagon immédiate en groupant les chiffres par
3, ainsi :

1011101,01101;=1|011]101,011|010=135,32

Base 10 -> 8
Le passage de la base 10 a la base 8 se fait par divisions successives par 8
450 |_8 56|_8 7.8
56 7 0
50 0 7
2

Soit 450(8) = 702(10)

Base 8 -> 2

Le passage de la base 8 a la base 2 se fait en "éclatant" chaque chiffre octal en un nombre
binaire codé sur 3 bits : exemple 743 ,

7 4 3

111 101 o011

Soit 743(8) = 111101011(2)
(Cf exercices Octal)

(PB:3h: exercices de rappel)

1.5 Labase 16 (hexadécimal)

La base 16 est apparue avec la logique micro programmée et les microprocesseurs.
L’ensemble des symboles contient 16 éléments. Comme il n’est pas possible
traditionnellement d’écrire, avec un seul caractére, un chiffre dont la valeur est supérieur a 9,
'ensemble comporte des lettres.

Par convention, A est équivalent a 10, B & 11 et ainsi de suite. L’'ensemble des symboles de
la base 16 est donc: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
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La base 16 est une forme contractée de la base 2.

Poids 16° 16° 16" 16° 167 16~ 16°
4096 256 16 1 1/16 1/256 1/4096 Base 10
N1 0 1 F F 0 0 0 =511
N2 0 1 2 A 1 0 0 =298,0625
N3 0 0 0 1 0 0 0 =1,00
Table de conversion:
Décimale | Binaire Octal Hexadécimale
0 00000 0 0
1 00001 1 1
2 00010 2 2
3 00011 3 3
4 00100 4 4
5 00101 5 5
6 00110 6 6
7 00111 7 7
8 01000 10 8
9 01001 11 9
10 01010 12 A
11 01011 13 B
12 01100 14 C
13 01101 15 D
14 01110 16 E
15 01111 17 F
16 10000 20 10
17 10001 21 11
Base 10 -> 16
Le passage de la base 2 a la base 16 se fait par divisions successives par 16
249 |_16 15| 16
89 15 & 0 soit 249(10) =F9 (16)
9
Base 2 -> 16

Le passage de la base 2 a la base 16 se fait de fagcon immédiate en groupant les chiffres par

4, ainsi :

1011101,01101, = 101 | 1101, 0110|10=5D, 68 (1

Base 16 -> 2
Le passage de la base 16 a la base 2 se fait en "éclatant" chaque chiffre octal en un nombre
binaire codé sur 4 bits

A B

C (s)

1010 1011 1100
Soit ABCe) = 101010111100,

Base 16 -> 8
Le plus simple est de passer par la base 2

(exercices hexa)
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2 Lareprésentation des nombres

Ces représentations font appel a des regles qui ont été adoptées pour des raisons de facilité
de traitement matériel et logiciel.

2.1 Représentation des nombres entiers non signés

La technique consiste uniquement a transformer les nombres décimaux en binaires et de
stocker chaque chiffre binaire sur un bit

Exemple : 74,0 = 01001010,

2.2 Représentation des nombres entiers signés : signe et valeur absolue

La solution la plus simple. Un élément binaire est ajouté au module pour la représentation du
signe. Habituellement, il est utilisé la correspondance suivante:

O0==>+
1==>-

Et le signe est placé a gauche du module (représentation sur 8 bits):

| Signe|b6 [b5 [b4 [b3 [b2 b1 [b0 |

Exemple : -2310) = 10010111,

Sur 8 bits, on peut coder 2’ nombre positifs (de +0 & 127) et 2’ nombre négatifs (-0 & -127),
on va donc de -127 & +127, avec 2 zéros !

Seulement avec cette représentation, il y a un probleme, on peut représenter 0 de deux
facons : 00000000 et 10000000 sont respectivement égaux a 0 et -0.

Exercices :

Si on effectue une opération arithmétique entre des nombres négatifs et positifs, on obtient
un résultat erroné. Exemple 3-4 = 3+(-4) =-1

Dans la représentation "signe et valeur absolue®, -4 = 10000100 (,
Hors 3 + (-4) = (-7) au lieu de (-1)
0 0 0 0

0
+ 1 0 0 0 0
1 0 0 0 0

Rk o
RO R

1
0
1 =7 (10) 10

(Exercices "signe et valeur absolue")
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2.2.1 Représentation des nombres en complément a 1

Le complément a un est I'opération qui inverse la valeur de chacun des bits d'un nombre
binaire. Il est la premiére étape du complément a deux.

Pour obtenir un nombre a complément a 1 il suffit de permuterles « 0 » en« 1 » etles « 1 »
en « 0 »,

Par exemple 10010101 donne en complément a « 1 » 01101010

On notera le N en complémenta 1: N

2.2.2 Représentation des nombres en complément a 2

Cette représentation évite les inconvénients de la représentation classique, ou apparaissait
deux zéros. Ce procédé nous permettra de créer des nombres négatifs.

(-N)=N+1
Exemple :

Pour obtenir la représentation sur 16 bits de I'entier -10.,0) en complément a deux, on part de
la représentation de 10, en binaire, soit 0000 0000 0000 1010

On complémente :
111112111 1111 0101

Et on ajoute 1
0000 0000 0000 0001

1111 1111 1111 0110 soit  FFF66 OU 177768,

Exercices : calculez 3-4

o 3-4=3+(-4)
e Onva coder (-4)
On prend le nombre 4 : 0 0 0 0 0 1 0 0
1 1
On inverse les bits : 1 1 1 1 1 0 1 1
On ajoute 1:11111100 0 0 0 0 0 0 0 1
1 1 1 1 1 1 0 0 = -4

e Le bit de signe (bit de poids fort) est automatiguement mis a 1 par l'opération
d'inversion.
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Calculons maintenant 3+(-4) :

0 0 0 0 0 0 1 1 = 30
+ 1 1 1 1 1 1 0 0 = -4
1 1 1 1 1 1 1 1

Conclusion : 3+(-4)=11111111

Si I'on obtient un résultat négatif (bit de poids fort a 1), il faut refaire le complément &

deux pour obtenir I'équivalent décimal positif

Le complément a deux de 11111111 est 00000001 soit 1 en décimal,

donc 11111111 = (-1) en décimal.

La représentation en complément a 2 permets de coder, sur 8 bits, les n ombres de -128 a

+127, avec seul 1 zéro !

Exemple sur 4 bits :

Non signé Représentation Représentation en
classique complément a 2
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 8 0 -8
1001 9 -1 =7
1010 10 -2 -6
1011 11 -3 -5
1100 12 -4 -4
1101 13 -5 -3
1110 14 -6 -2
1111 15 -7 -1

(Exercices complément a 2)

2.3 Lareprésentation BCD (ou DCB "décimal codé binaire")

Dans certains cas, on peut préférer aux représentations binaires décrites ci-dessus un

codage qui permette de passer plus facilement du code décimal d'un nombre a sa

représentation en machine. Le codage couramment utilisé porte le nom de BCD (Binary
Coded Decimal).

Chaque chiffre d'un nombre représenté en base 10 est codé sur quatre bits (un quartet)
Avec n bits (n multiple de 4), il est possible de représenter les nombres entre 0 et 10"*-1
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Ainsi, I'entier 1992 sera représenté par : 0001 1001 1001 0010 (,

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

OO N|OU~|lWW(FL|O

Les quartets 1010 a 1111 sont des combinaisons inutilisées donc illégales.

Le codage du signe peut étre fait séparément en lui réservant un demi-octet (nibble ou
guartet) auquel on affectera une valeur en dehors de l'intervalle [0,9].

Par convention,
- le signe "-" sera codé 1101, cad D
- le signe "+" sera codé 1100, cad Cpg

alors -1992 sera codé D1992, 3¢,

Remargues
6+5=0110 + 0101 = 1011 ce qui est interdit en BCD !

Il faut donc ajouter 6 (les 6 codes non significatifs) ce qui donne 1011+0110 = 1 0001 ce qui
donne bien 11 en décimal ! (0001 0001)

Exercice :

Calculez la valeur décimale de : 0001100110010100 (y
0001 1001 1001 0100 (2)
1*1000 +  9*100 + 9*10 + 4*1
1994

Calculez la valeur décimale de : 1010 ()

1010 ne fait pas 10 (10 car 1010 fait parti des valeurs interdites
10 = 0001 0000 !

Calculez 12+6: 00010010 (12)
00000110 (6)
00011000 (=18)

+

Calculez 22+8 00100010 (22)

00001000 (8)

00101010 Valeur interdite ! on rajoute 6 !
00000110 (6)

00110000 (=30)

+

+

(Exercices "BCD")
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Il existe des variantes du codage BCD:

Le code Excess 3 (XS 3)

Le codage binaire excédent 3 qui consiste a représenter le chiffre a coder + 3.
Par exemple, pour coder 48 :

4 8
3 13
7 1
soit 0111 1011

En Excess 3, les codes non valides sont : 0000 (zéro),0001 (un),0010 (deux),1101 (treize),
1110 (quatorze) et 1111 (quinze)

Le code Aiken

Le code Aiken ou 0, 1, 2, 3, 4 sont codés comme en BCD et 5, 6, 7, 8, 9 sont codés de 1011
a 1111. Il permet d'obtenir le complément a 9 en permutant les 1 et les 0.

2.4 Code adistance unité (code Gray ou code Réflechi)

Ce codage permet de ne faire changer qu'un seul bit a la fois quand un nombre est
augmenté d'une unité. Le code distance a unité le plus fréquemment utilisé est le code Gray
ou code réfléchi.

Le code Gray est un code non pondéré (aucun poids est affecté a la position d'un bit. On
convient simplement d'un tableau de correspondances entre les objets a coder et une
représentation)
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Exemple le code Gray : Pour passer d'une ligne a la suivante, on inverse le bit le plus a
droite possible conduisant a un nombre nouveau

Base 10 Code Gray
0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111

Blo|o|N|o|o|s|wv ko

Ce code a été imaginé pour éviter les problémes de transition car lorsque I'on passe de n a n+1
dans un code binaire on peut lire plusieurs états parasites, exemple pour passer de 3 a 4

3 =====> 0011
0010 états parasite de transition
0000 états parasite de transition
4 =====> 0100
On peut donc lire 2 puis 0 et enfin 41!

Alors que en code Gray le probléme disparait.

Ce code gray est surtout utilisé pour des capteurs de positions, en effet, un seul bit
change a chaque fois, ce qui évite toute ambiguité de lecture.

Le code Gray sert également dans les tables de Karnaugh utilisées lors de la conception de
circuits logiques.

(Exercices Code Gray)
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2.5 Les nombres réels

Deux méthode permettent de représenter les nombres réels : les représentations en virgule
fixe et virgule flottante

2.5.1 Représentation en Virgule fixe

Cette technique fixe arbitrairement la position de la virgule "entre" deux chiffres de la
représentation binaire

Exemple : 12,75, a représenter en virgule fixe sur un octet.
On suppose que la virgule si situe entre le bit 3 et 4

12 (10)= 1100(2)

0,75 (10) = 0,11(2)

1100,1100

2.5.2 Représentation en Virgule flottante

Les nombres a virgule flottante sont les nombres les plus souvent utilisés dans un
ordinateur. Ce sont des approximations rationnelles de nhombres réels.

Les nombres a virgule flottante possédent
- unsigne s (dans {-1, 1}),
- une mantisse entiere m (parfois appelée significande)
- un exposant e.

Un tel triplet représente un réel s*m*b® ou b est la base de représentation (parfois 2,
mais aussi 16 pour des raisons de rapidité de calculs, ou éventuellement toute autre
valeur).

En faisant varier e, on fait « flotter » la virgule décimale. Généralement, m est d'une taille
fixée.

Ceci s'oppose a la représentation dite en virgule fixe, ou I'exposant e est fixé.

Rappel :
7 (pi) 3,14
On peut noter n = 314*1072
n= 0,314*10"
n = 0,00314*10%y
Mantisse exposant

Les différences de représentation interne des nombres flottants d'un ordinateur a un autre
obligeaient a reprendre finement les programmes de calcul scientifique pour les porter d'une
machine & une autre jusqu'a ce qu'un format normalisé soit proposé par I'lEEE.
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Big et Little Endian

Description d'une facon (parmi d'autres) dont on stocke les nombres dans plusieurs octets :
I'octet de poids fort est stocké avant I'octet de poids faible. Utilisé sur la famille des 680x0 de
Motorola, c'est la facon habituelle de voir un nombre. Opposé a little endian.

Big Endian+o12 3
UNIH
3z1o«+Little Endian

La représentation en Big Endian ou Little Endian consiste donc a déterminer l'arrangement
des octets.

Exemple :

01000001000010100000000000000000 (2)

Inversion de I'o

00000000 00000000 00001010 01000001
0 0 0 0 0 A 4 1 =00 00 OA 41 (i

Il n'y a pas de solution miracle au probléme de I'arrangement des octets (Endian). Chacun
doit s'entendre sur le format d'emmagasinage des données. Un des processeurs aura a
traduire (changer l'ordre) des données provenant de l'autre processeur.

Certains nouveaux processeurs (tel que le PowerPC) peuvent étre Bi-Endian (ils peuvent
utiliser un format ou l'autre) -- mais habituellement le systeme d'exploitation qui les utilise est
dépendant d'un certain type «d'Endianx». Alors ils sont fixés sur une méthode et rarement
vont-ils utiliser l'autre.

Quelques faits : les processeurs Intel (x86 et Pentium) sont Little Endian et les processeurs
Motorola (la série 680x0) sont Big Endian. Le MacOS est Big Endian et Windows est Little
Endian.
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2.5.3 Exemple de représentations flottantes

Norme IEEE 754 (Institue of Electrical and Electronics Engineers)

La norme IEEE 754 (reprise par la norme internationale CEIl 60559) spécifie deux formats de
nombres en virgule flottante et les opérations associées. La quasi-totalité des architectures
d'ordinateurs actuelles, y compris PowerPC, et AMD64, incluent une implémentation
matérielle des calculs sur flottants IEEE, directement dans le microprocesseur, garantissant

une execution rapide.

Les flottants IEEE peuvent étre codés sur 32 bits (« simple précision ») ou 64 bits (« double
précision »). Il est aujourd’'hui trés rare que des programmes utilisent la simple précision, en

tout cas sur station de travail. La répartition des bits est la suivante :

Signe Exposant Mantisse
Simple précision 1 bit 8 hits 23 bits
Double précision 1 bit 11 bits 52 hits

Simple précision : seeeeeeeemmmmmmmmmmmmmmmmmmmmmmm

La valeur d'un nombre ainsi codé est donc :

(_1)5 * 2(E-127) * (1,M )

(_1)3 * 2(E—1023) * (1,M )

Exemple :

pour les nombres codés en simple précision

pour les nombres codés en double précision

On désire coder 2,50 en flottant de type short real dans la norme IEEE-754

- Convertir 2,5 en binaire = 10,1,

- Normaliser -> 1,01*2" (mantisse 01, exposant 1)

- Calculer la représentation de I'exposant d'aprés la formule : (-1)° * 229 * (1 M)

e-127 =1
e =127+1
e =128

- Convertir 'exposant en binaire 128 (100 = 10000000 (,

- Représenter la mantisse en binaire sur 23 bits= 01000000000000000000000

- Calculer le bit de signe, ici s=0

- Lareprésentation est donc :

01000000001000000000000000000000
SeeeeeeecemmmmmmmmMmMmmMmMMMMMIMMmmMmnm
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On désire coder 10 en flottant de type short real dans la norme IEEE-754

- Convertir 1 en binaire = 1,0,
- Normaliser -> 1,0*2° (mantisse 0, exposant 0)

- Calculer la représentation de I'exposant d'aprés la formule : (-1)° * 2E29 % (1 M)

e-127=0
e=127

- Convertir 'exposant en binaire 127 100 = 01111111 ,
- Calculer le bit de signe, ici s=0
- Lareprésentation est donc 0 | 01111111 | 000 0000 0000 0000 0000 0000

- 00111111 1000 0000 0000 0000 0000 0000
3F 80 00 00 (¢

Précautions d'emploi
Certains nombres ne peuvent pas étre représenteés :

e Les nombres positifs supérieures a 1,11111... * 2*%’
127 est la plus grande caractéristique codable

e Les nombres négatifs inférieurs a -3,4 * 1038
¢ Les nombres trop proches de 0
La plus petite caractéristique codable est 2%, |a plus petite mantisse est

0,000000...1 (2-%)
Le plus petit nombre codable est donc 2% = 1,510

La représentation en virgule flottante est donc source d'imprécision

Rappels

a-b=c < a=c+b
a+b=c < a=c-b

a-b=-c & a=-c+b
atb=-c— a=-c-b
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3 Lareprésentation des caracteres

Les caractéres (lettres, chiffres, symboles de ponctuation) sont généralement codés sur un
octet. Les codes les plus frequemment utilisés sont le code ASCII (American Standard Code
for Information Interchange) et I'EBCDIC (Extended Binary Coded Decialm Interchange
Code)

3.1 ASCII (American Standard Code for Information Interchange)

Le code ASCII représente chaque caractére sur 7 bits (on parle parfois de code ASCII
étendu sur 8 bits). On peut donc coder 2’ = 128 caractéres.

- Les caractéres de 0 & 31 ainsi que le 127 ne sont pas affichables, et correspondent a
des directives de terminal ou des fonctions de commandes

- Le caractéere 32 est I'espace blanc.

- Les autres correspondent aux chiffres, aux lettres majuscules et minuscules et a
guelques symboles de ponctuation.

000 001 010 011 100 101 110 110
0000 NULL DLE SP 0 @ = ) p
0001 SOH  DC1 ! 1 A Q a q
0010  STX DC2 " 2 B R b r
0011  ETX DC3 # 3 C S c s
0100  EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110  ACK SYN & 6 F v f v
0111  BEL ETB : 7 G W g W
1000  BS CAN ( 8 H X h X
1001  HT EM ) 9 | Y i y
1010  LF SUB * : J z i z
1011 VT ESC  + ; K [ k {
1100  FF FS , < L \ | |
1101  CR GS - = M ] m ]
1110 SO RS . > N A n ~
1111 S US / ? o) 0 DEL

Table ASCII 7 bits

3.2 ASCII Etendu

Comme ce standard n'utilise que 7 bits (au lieu de 8), il reste 128 caractéres disponibles
pour les langues nationales. Par exemple, I''SO 8859-1, appelée aussi Latin-1, étend I'ASCII
avec les caractéres accentués utiles aux langues d'Europe occidentale comme le francais.
(pages de code)
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e |SO 8859-1 (latin-1 ou européen occidental) — probablement la partie la plus
largement utilisée de I1SO 8859, couvrant la plupart des langues européennes
occidentales : l'allemand, l'anglais, le basque, le catalan, le danois, I'écossais,
I'espagnol, le féringien, le finnois (partiellement?), le frangais (partiellement?),
lislandais, lirlandais, [litalien, le néerlandais (partiellement?), le norvégien, le
portugais, le rhéto-roman et le suédois, certaines langues européennes sud-
orientales (I'albanais), ainsi que des langues africaines.

Le symbole de I'euro est dans la version révisée ISO 8859-15 (latin-9).

e |SO 8859-2 (latin-2 or européen central) — supporte les langues d'Europe centrale
ou de I'Est basées sur un alphabet romain, y compris le polonais, le tcheque, le
slovaque, le slovéne et le hongrois. Le symbole de I'euro manquant est présent dans
la version 1ISO 8859-16.

e |SO 8859-3 (latin-3 or européen du Sud) — le turc, le maltais, et I'espéranto ;
largement supplanté par ISO 8859-9 pour le turc, et par Unicode pour l'espéranto.

e |SO 8859-4 (latin-4 or européen du Nord) — l'estonien, le letton, le lituanien, le
groenlandais, et le sami.

e |SO 8859-5 (cyrillique) — Couvre la plupart des langues slaves utilisant un alphabet
cyrillique, y compris le biélorusse, le bulgare, le macédonien, le russe, le serbe et
['ukrainien.

e |SO 8859-6 (arabe) — Couvre les glyphes arabes les plus communs, mais pas tous.

e |SO 8859-7 (grec) — Couvre la langue grecque moderne (orthographe monotonique).
Peut étre utilisé aussi pour le grec ancien écrit sans les accents ou dans
I'orthographe monotonique, mais mangue les signes diacritiques pour l'orthographe
polytonique. Ceux-ci ont été introduits avec Unicode.

e |SO 8859-8 (hébreu) — Couvre l'alphabet hébraique moderne tel qu'il est utilisé en
Israél. En pratique, deux codes différents existent : logique et visuel.

e |SO 8859-15 (latin-9 ou parfois de fagcon impropre latin-0) — une révision de 8859-1
qui abandonne quelques symboles peu utilises, les remplacant avec le symbole
d'Euro € et les lettres S, §, Z, Z, CE, e, et Y, qui compléte la couverture du francais et
du finlandais.

e |SO 8859-16 (latin-10 or européen du Sud-Est) — pour l'albanais, le croate, le
hongrois, l'italien, le polonais, le roumain et le slovéne, mais aussi le finlandais, le
francais, l'allemand et le gaélique irlandais (en nouvelle orthographe). Cette police
mise plus sur les lettres que les symboles. Le signe de monnaie est remplacé avec le
symbole d'Euro. Pour autant, le format n'est pas totalement universel :

3.3 Fichiers ASCII

L'ACSII n'est pas un format totalement universel :
- sous Mac OS (Apple Macintosh), la fin de ligne est indiquée par un retour de chariot (CR)
- sous Linux, la fin de ligne est indiquée par un saut de ligne (LF)
- sous Microsoft Windows, la fin de ligne est indiquée par un retour chariot suivi d'un
saut de ligne (CRLF).
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Ainsi, lorsque I'on ouvre un fichier ASCII créé par un systeme sur un autre systeme, il faut en
général faire de la mise en forme (c'est-a-dire refaire les fin de ligne) afin de pouvoir I'afficher
et le lire de maniére confortable. Toutefois, cela ne perturbe en général pas les programmes
utilisant les fichiers ASCII.

3.4 Exemples

Exemple : la chaine de caractere "Ordinateur" sera codée :
o r d [ n a t e u r
4F 72 64 69 6E 61 74 65 75 72 (16

Exemple : la séquence binaire 1000001100110010011001001111
Représente le message ALLO

Quelques exemples de représentations internes sur une machine, ol les entiers et réels sont
codés sur 32bits, en complément a 2 pour les entiers et en format IEEE-754 pour les
réprésentations flottantes. Les caracteres sont codés en ASCII

Information a coder Nombre de bits occupés | Représentation interne HEXA
Chiffre 1 en entier 32 00000001

Chiffre -1 en entier 32 FFFFFFF

Chiffre 1 en flottant 32 Exp 7F, mantisse 0, signe 0
Chiffre -1 en flottant 32 Exp 7F, mantisse 0, signe 1
Caractere "1" 8 31

Caractere "+1" 16 2B31

Caractéere "-1" 16 2D31

Caractere "1.0" 24 312E30

Caractere "-1.0" 32 2D312E30

3.5 EBCDIC (Extended Binary Coded Decimal Interchange Code)

L'EBCDIC est un mode de codage des caractéres sur 8 bits créé par IBM a I'époque des
cartes perforées. Il existe 6 versions différentes, incompatibles entre elles. Ce mode de
codage a été critiqué pour cette raison, mais aussi parce que certains caractéres de
ponctuation ne sont pas disponibles dans certaines versions.

3.6 UNICODE

Unicode est un standard informatique qui vise a donner a tout caractere de n'importe quel
systeme d'écriture de langue un identifiant numérique. Unicode a été développé dans le but
de remplacer l'utilisation de pages de code nationales. Dans la pratique, tous les systémes
d'écriture ne sont pas encore présents, car un travail de recherche documentaire auprés de
spécialistes peut encore s'avérer nécessaire pour des caractéeres rares ou des systémes peu
connus.

Unicode accepte trois formes de présentation pour représenter un caractére (au sens de
symbole) : 'UTF-8, 'UTF-16 et ITUTF-32. Le chiffre aprés UTF représente le nombre de bits
sur lequel le caractére est codé
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4 Lareprésentation des Images

Toute image affichée sur un écran ou une imprimante est constituée de pixels.
Le pixel ou point est l'unité de base d'une image numérique. Son nom provient de
I'expression anglaise "picture element”, c'est-a-dire, « élément d'image » ou « point
élémentaire ».

4.1 BITMAP : Images 24 bits (ou « couleurs vraies »)

Chaque point de limage est mémorisé. Ces images sont tres gourmandes en mémoire
compte tenu que chaque pixel est codé sur un bit (noir & blanc) ou sur 3 octets pour les
images couleur.

Couleur

Chaque octet correspond a l'une des 3 couleur primaires (Rouge, Vert, Bleu). Les 256
couleurs codables sur un octet correspondent au poids de chacune des couleurs primaires
qui compose le point coloré.

Ce systéme donne un total de 16,5 millions de pixels codables (256*256*256), ce qui est
largement suffisant car I'ceil humain est loin de pouvoir en discerner autant.

R V B Couleur
0 0 0
0 0 1
255 0 o |NNNCUGENNN
0 255 0 vert

0 0 255 bleu
128 128 128 gris

255 255 255 blanc

Calculez la place mémoire nécessaire pour réprésenter les images suivantes :
e Larésolution du VGA est de 640 x 480, soit 307 200 pixels (900Ko);
e Larésolution du Super-VGA est de 800 x 600, soit 480 000 pixels (1406 Ko);
e La résolution du XGA est de 1 024 x 768, soit 786 432 pixels(2,25 Mo)

4.2 BITMAP : Images a palettes, images en 256 couleurs (8 bits)

On utilise souvent un autre codage des images BITMAP, le codage a I'aide de la "palette de
couleur": le logiciel détermine 256 couleurs importantes dans l'image, ces couleurs sont
codées sur 3 octets (mais une seule fois), ensuite chaque pixel est codé sur 1 octet qui
correspond a une entrée dans la palette de couleurs

De cette fagon, on divise a peu prés par 3 'encombrement mémoire d'une image, mais on
perd en nuance et contraste. C'est la technique utilisée pour les images BMP.
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4.3 BITMAP : Images avec gestion de la translucidité (canal alpha)

On peut attribuer a une image un canal supplémentaire, appelé canal alpha, qui définit le
degré de transparence de limage. Il s'agit d'un canal similaire aux canaux traditionnels
définissant les composantes de couleur, codé sur un nombre fixe de bits par pixel (en
général 8 ou 16). On échelonne ainsi linéairement la translucidité d'un pixel, de l'opacité
compléte a la transparence.

4.4 Les images vectorielles

Les images sont représentées a l'aide d'équations mathématiques, portions de droite et de
courbes. Un cercle sera déterminée par les coordonnées du centre et la valeur du rayon,
avec éventuellement la couleur et I'épaisseur du trait.

L'intérét de cette méthode est la possibilité de modifier la taille du dessin dans altérer la
définition et les proportions. (ex: WMF)

L'usage de prédilection de ce type d'images concerne les schémas qu'il est possible de
générer avec certains logiciels de CAO (Conception Assistée par Ordinateur) comme
AutoCAD ou CATIA. Ce type d'images est aussi utilisé pour les animations Flash, utilisées
sur Internet pour la création de banniéres publicitaires, l'introduction de sites web, voire des
sites web complets.

4.5 Quelgues Format d'images

4.5.1 GIF (Graphics Interchange Format)

Le Graphics Interchange Format (littéralement « format d'échange de graphiques »), plus
connu sous l'acronyme GIF, est un format d'image numérique couramment utilisé sur le
Web.

GIF a été mis au point par CompuServe en 1987 pour permettre le téléchargement d'images
en couleur. Ce format utilise l'algorithme de compression LZW, nettement plus efficace que
I'algorithme RLE utilisé par la plupart des formats alors disponibles (PCX, ILBM puis BMP).

LZW
LZW (Cet algorithme est appelé « a dictionnaire », car il se base sur la répétition de chaines
de caractéres dans un méme flux)

RLE

On dispose d'un compteur, en général sur un octet, indiquant combien de points blancs ou
noirs se suivent. Exemple : WWWBWWWWWWWWWWBBBBBWBBB

3W1B10W5B1W3B

45.2 JPEG

Bien que plus intéressant pour des photographies ou des images lourdes, la compression
JPEG provoque une perte dinformation (algorithme de compression destructif) pouvant
aboutir a une perte de qualité visible si I'utilisateur privilégie un taux de compression élevé,
particulierement lorsque l'image contient des changements nets de couleur ou peu de
couleurs (par exemple des logos, captures d'écran, diagrammes, ...). Le format JPEG ne
geére ni les animations ni la transparence
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453 TIFF

TIFF est un format extrémement flexible.

Il est notoirement connu pour permettre I'enregistrement des données multi-octets au format
big endian ou little endian.

Il permet d'utiliser de nombreux types de compression, avec ou sans perte de données :
(brut, PackBits, LZW, CCITT Fax 3 et 4, JPEG.)

Cette considérable flexibilité fait que TIFF est utilisé dans des applications tres diverses, des
scanners industriels aux appareils photo numériques en passant par les imprimantes. En
revanche cela fait également qu'il n'existe pas de logiciel capable d'afficher n'importe quelle
image TIFF. Un fichier TIFF commence par les deux caracteres ASCIl MM pour big endian
ou Il pour little endian. Les deux octets suivants représentent 42, en big endian ou little
endian

45.4 PNG (Portable Network Graphics)

Le PNG (Portable Network Graphics) est un format d'images numériques libre de droit, qui a
été créé pour remplacer le format propriétaire GIF, dont la compression était soumise a un
brevet. Le PNG est un format non destructeur spécialement adapté pour publier des images
simples comprenant des aplats de couleurs (surface de couleur uniforme).
Compression Deflate (Deflate est un algorithme de compression de données sans pertes qui
couple l'algorithme LZ77 et le codage de Huffman (compression de type statistique))

Lorsque limage PNG utilise une palette de 256 couleurs maximum, il n'est alors possible
d'utiliser gu'un seul niveau de transparence (totalement transparent ou totalement opaque).

RAPPEL
(th):T?:p/ Compression Nombre de couleurs Affichage Animation Transparence
vectoriel) des données supportées progressif
Oui,
JPEG Bitmap réglable 16 millions Oui Non Non
(avec perte)
Bitmap o 16 millions Oui Non Non
JPEG2000 avec ou sans perte
. Oui, . . . .
GIF Bitmap Sans perte 256 maxi (palette) Oui Oui Oui
oui Palettisé (256 couleurs ou moins) Oui
PNG Bitmap sans érte ou Oui Non (couche
P 16 millions Alpha)
Compression ou pas Oui
TIFF Bitmap P p de monochrome a 16 millions Non Non (couche
avec ou sans pertes
Alpha)
. - i ) :
SVG vectoriel compression 16 millions e SIS Oui oI
possible pas (par nature)

4.6 Protection des Droits d'Auteurs

Pour tenter de faire respecter le droit d'auteur (en France) et le copyright (dans presque tous
les autres pays), il existe des techniques de marquage numérique d'une image

4.6.1 Protection par signature visible

Cette technique consiste a intégrer une indication sur l'image, par exemple I'organisme ou
l'auteur a qui appartient I'image, afin de dissuader les pirates de s’en servir. L'inconvénient
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de cette méthode est qu'il est tres facile d'éliminer ce type de tatouage avec un outil de
traitement d'images, puisque le tatouage est visible.

4.6.2 Protection par signature cryptée

Cette technique consiste a cacher le tatouage dans les données de l'image. Cette approche
a l'avantage de ne pas géner la lecture de limage par le simple spectateur tout en
permettant une facile identification.

L'auteur en tire un avantage complémentaire : I'éventuel pirate inattentif ne sera pas tenté de
retirer ou modifier la signature ; le pirate plus volontaire verra son activité illégale rendue un
peu plus difficile ou facilement prouvable (par la seule présence du tatouage).

Sténographie :

Usage des bits de poids faible d'une image

L'idée est de prendre un message et de le modifier de maniére aussi discréte que possible
afin d'y dissimuler l'information a transmettre. Le message original est le plus souvent une
image.

La technique de base, dite LSB pour Least Significant Bit, consiste a modifier le bit de poids
faible des pixels codant I'image : une image numérique est une suite de points, que I'on
appelle pixel, et dont on code la couleur a I'aide d'un triplet d'octets par exemple pour une
couleur RGB sur 24 bits. Chaque octet indique l'intensité de la couleur correspondante
(rouge, vert ou bleu) par un niveau parmi 256.

Passer d'un niveau n au niveau immédiatement supérieur (n+1) ou inférieur (n-1) ne modifie
gue peu la teinte du pixel, or c'est ce que I'on fait en modifiant le bit de poids faible de 'octet.
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